The LSST Science Pipelines Software: Optical Survey Pipelined Reduction and Analysis Environment

RUBIN OBSERVATORY SCIENCE PIPELINES DEVELOPERS, JAMES F. BOSCH , YUSRA ALSAYYAD , TIM JENNESS , ERIC C. BELLM , ROBERT H. LUPTON , NATE B. LUST , IAN S. SULLIVAN , CHRISTOPHER Z. WATERS , KRZYSZTOF FINDEISEN , ERFAN NOURBAKHSH , AGNÈS F. FERTÉ , ARUN KANNAWADI , ANDRÉS A. PLAZAS MALAGÓN , AND K. SIMON KRUGHOFF , ANDRÉS A. PLAZAS MALAGÓN , ANDRÉS A. SIMON KRUGHOFF , ANDRÉS A. PLAZAS MALAGÓN , ANDR

THE RUBIN OBSERVATORY SCIENCE PIPELINES TEAM

1

ABSTRACT

The NSF-DOE Vera C. Rubin Observatory will produce the Legacy Survey of Space and Time (LSST) and produce 11 data releases over the ten-year survey. The LSST Science Pipelines Software will be used to create these data releases and to perform the nightly alert production. This paper provides an overview of the LSST Science Pipelines Software and describes the components and how they are combined to form pipelines.

Keywords: Astrophysics - Instrumentation and Methods for Astrophysics — methods: data analysis — methods: miscellaneous

1. INTRODUCTION

The NSF-DOE Vera C. Rubin Observatory will be performing the 10-year Legacy Survey of Space and Time (LSST; Ž. Ivezić et al. 2019) starting in 2025. Rubin Observatory is located on Cerro Pachon in Chile and consists of the 8.4 m Simonyi Survey Telescope (S. J. Thomas et al. 2022) with the 3.2-gigapixel LSSTCam survey camera (A. Roodman et al. 2024) performing the main survey and the Rubin Auxiliary Telescope (P. Ingraham et al. 2020) providing supplementary atmospheric calibration data. The Data Management System (DMS; W. O'Mullane et al. 2022) is designed to handle the flow of data from the telescope, approaching 20 TB per night, in order to issue alerts and to prepare annual data releases. A central component of the DMS is the LSST Science Pipelines software that provides the algorithms and frameworks required to process the data from the LSST and generate the coadds, difference im-

The LSST Science Pipelines software consists of the building blocks and pipeline infrastructure required to construct high performance pipelines to process the data from LSST. It has been under development since at least 2004 (T. Axelrod et al. 2004) and has evolved significantly over the years as the project transitioned from prototyping (T. Axelrod et al. 2010) and entered into formal construction (M. Jurić et al. 2017). The software is designed to be usable by other optical telescopes and this has been demonstrated with Hyper Suprime Cam on the Subaru Telescope in Hawaii (J. Bosch et al. 2018) and also with data from the Dark Energy Camera (DECam), the VISTA infrared camera (VIRCAM), the Wide Field Survey Telescope (WFST; M. Cai et al. 2025), and the Gravitational-wave Optical Transient Observer (GOTO; J. R. Mullaney et al. 2021).

In this paper we provide an overview of the components of the software system. This includes a description of the support libraries and data access abstraction, the

²Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA

³ Vera C. Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA
⁴ University of Washington, Dept. of Astronomy, Box 351580, Seattle, WA 98195, USA

⁵SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
⁶Department of Physics, Duke University, Durham, NC 27708, USA

⁷ Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA

ages, and catalogs to the user community for scientific analysis.

^{*} Author is deceased

pipeline task system, and an overview of the algorithmic components. We do not include details of the science validation of the individual algorithms. The other components of the LSST DMS, such as the workflow system (M. Gower et al. 2022; E. Karavakis et al. 2024), the Qserv database (D. L. Wang et al. 2011; F. Mueller et al. 2023) and the Rubin Science Platform (M. Jurić et al. 2019; W. O'Mullane et al. 2024), are not covered in this paper.

2. FUNDAMENTALS

The LSST Science Pipelines software is written in Python with C++ used for high-performance algorithms and for core classes that are usable in both languages. We use Python 3 (having ported from python 2, T. Jenness 2020, currently with a minimum version of Python 3.12), and the C++ layer can use C++17 features with pybind11 being used to provide the interface from Python to C++. Additionally, the C++ layer uses ndarray to allow seamless passing of C++ arrays to and from Python numpy arrays. This compatibility with numpy is important in that it makes LSST data structures available to standard Python libraries such as Scipy and Astropy (T. Jenness et al. 2016; Astropy Collaboration et al. 2018).

Although all the software uses the lsst namespace, the code base is split into individual Python products in the LSST GitHub organization⁸ that can be installed independently and which declare their own dependencies. These dependencies are managed using the "Extended Unix Product System" (EUPS; N. Padmanabhan et al. 2015; T. Jenness et al. 2018) where most of the products are built using the SCons system (S. Knight 2005) with LSST-specific extensions provided in the sconsUtils package enforcing standard build rules and creating the necessary Python package metadata files.

For logging we always use standard Python logging with an additional VERBOSE log level between INFO and DEBUG to provide additional non-debugging detail that can be enabled during batch processing. This verbose logging is used for periodic logging where long-lived analysis tasks are required to issue a log message every 10 minutes to indicate to the batch system that they are still alive and actively performing work. For logging from C++ we use Log4CXX wrapped in the lsst.log package to make it look more like standard Python logging, whilst also supporting deferred string formatting such that log messages are only formed if the log message level is sufficient for the message to be logged. These C++ log messages are forwarded to

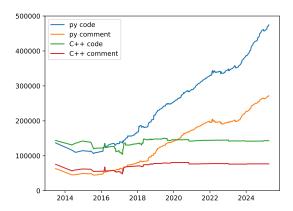


Figure 1. The number of lines of code comprising the LSST Science Pipelines software as a function of year. Line counts include comments but not blank lines. Python interfaces are implemented using pybind11 and that is counted as C++ code. For the purposes of this count Science pipelines software is defined as the lsst_distrib metapackage and does not include code from third party packages.

Python rather than being issued from an independent logging stream. Finally, we also provide some LSST-specific exceptions that can be thrown from C++ code and caught in Python.

As of April 2025, the Science Pipelines software is approximately 700,000 lines of Python and 225,000 lines of C++. The number of lines in the pipelines code as a function of time is given in Fig. 1.

2.1. Python environment

An important aspect of running a large data processing campaign is to ensure that the software environment is well defined. We define a base python environment using conda-forge via a meta package named rubin-env⁹. This specifies all the software needed to build and run the science pipelines software. A Docker container is built for each software release and the fully-specified versions of all software are recorded to ensure repeatability.

2.2. Unit Testing and Code Coverage

Unit testing and code coverage are critical components of code quality (T. Jenness et al. 2018). Every package comes with unit tests written using the standard unittest module. We run the tests using pytest (H. Krekel 2017) and this comes with many advantages in that all the tests run in the same process and requiring global parameters to be well understood, tests can be run in parallel in multiple processes, plugins can be enabled to extend testing and record test coverage, and a test report can be created giving details of run times

⁸ https://github.com/lsst

⁹ https://github.com/conda-forge/rubinenv-feedstock

Table 1. Common dimensions present in the default dimension universe.

Name	Description
instrument	Instrument.
band	Waveband of interest.
physical_filter	Filter used for the exposure.
day_obs	The observing day.
group	Group identifier.
exposure	Individual exposure.
visit	Collection of 1 or 2 exposures.
tract	Tesselation of the sky.
patch	Patch within a tract.

and test failures. Coding standards compliance with PEP 8 (G. van Rossum 2013) is enforced using GitHub Actions, the ruff package, and pre-commit checks. A Jenkins system provides the team with continuous integration facilities that includes running longer tests with pre-cursor datasets.

3. DATA ACCESS ABSTRACTION

3.1. Butler

Early in the development of the LSST Science Pipelines software it was decided that the algorithmic code should be written without knowing where files came from, what format they were written in, where the outputs are going to be written or how they are going to be stored. All that the algorithmic code needs to know is the relevant data model and the Python type. To meet these requirements we developed a library called the Data Butler (see e.g., T. Jenness et al. 2022; N. B. Lust et al. 2023).

The Butler internally is implemented as a registry, a database keeping track of datasets, and a datastore, a storage system that can map a Butler dataset to a specific collection of bytes. A datastore is usually a file store (including POSIX file system, S3 object stores, or WebDAV) but it is also possible to store metrics directly into the Sasquatch metrics service (A. Fausti 2023; A. Fausti Neto et al. 2024).

A core concept of the Butler is that every dataset must be given what we call a "data coordinate." The data coordinate locates the dataset in the dimensional space where dimensions are defined in terms that scientists understand. Some commonly used dimensions are listed in Table 1. Each dataset is uniquely located by specifying its dataset type, its run collection, and its co-

ordinates, with Butler refusing to accept another dataset that matches all three of those values. The dataset type defines the relevant dimensions (such as whether this is referring to observations or a sky map) and the associated Python type representing the dataset. The run collection can be thought of as a folder grouping datasets created by the same batch operation, but does not have to be a folder within a file system.

As a concrete example, the file from one detector of an LSSTCam observation taken sometime in 2025 could have a data coordinate of instrument="LSSTCam", detector=42, exposure=2025080300100 and be associated with a raw dataset type. The exposure record itself implies other information such as the physical filter and the time of observation. A deep coadd on a patch of sky would not have exposure dimensions at all and would instead be something like instrument="LSSTCam", tract=105, patch=2, skymap="something", which would tell you exactly where it is located in the sky since you can calculate it from the tract and patch and skymap.

3.2. Instrument Abstractions: Obs Packages

The Butler and pipeline construction code know nothing about the specifics of a particular instrument. In the default dimension universe there is an instrument dimension that includes a field containing the full name of a Python Instrument class. This class, which uses a standard interface, is used by the system to isolate the instrument-specific from the pipeline-generic. Some of the responsibilities are:

- Register instrument-specific dimensions such as detector, physical_filter and the default visit_system.
- Define the default raw dataset type and the associated dimensions.
- Provide configuration defaults for pipeline task code that is processing data from this instrument.
- Provide a "formatter" class that knows how to read raw data.
- Define the default curated calibrations known to this instrument.

By convention we define the instrument class and associated configuration in obs packages. As an extension to the base definition of an "instrument", the LSST Science Pipelines define a modified Instrument class that includes focal plane distortions using the afw package (see §4.3). There are currently project-supported obs packages for:

- LSSTCam (A. Roodman et al. 2024; T. Lange et al. 2024; Y. Utsumi et al. 2024; S. M. Kahn et al. 2010), LATISS (P. Ingraham et al. 2020), and associated Rubin Observatory test stands and simulators.
- Hyper-SuprimeCam (S. Miyazaki et al. 2018).
- The Dark Energy Camera (B. Flaugher et al. 2015;
 D. L. DePoy et al. 2008).
- CFHT's MegaPrime (O. Boulade et al. 2003).

Additionally, teams outside the project have developed obs packages to support Subaru's Prime Focus Spectrograph (S.-Y. Wang et al. 2020), VISTA's VIRCAM (W. Sutherland et al. 2015), the Wide Field Survey Telescope (WFST; M. Cai et al. 2025), and the Gravitational-wave Optical Transient Observer (GOTO; J. R. Mullaney et al. 2021).

3.3. Metadata Translation

Every instrument uses different metadata standards but the Butler data model and pipelines require some form of standardization to determine values such as the coordinates of an observation, the observation type, or the time of observation. To perform that standard extraction of metadata each supported instrument must provide a metadata translator class using the $astro_metadata_translator$ infrastructure. ¹⁰ The translator classes can understand evolving data models and allow the standardized metadata to be extracted for the lifetime of an instrument even if headers changed. Furthermore, in addition to providing standardized metadata the package can also provide programmatic or per-exposure corrections to data headers prior to calculating the translated metadata. This allows files that were written with incorrect headers to be recovered during file ingestion.

4. CORE INFRASTRUCTURE LIBRARIES

4.1. Region Handling

The sphgeom package is used for spherical geometry calculations, sky-based region defintions, and sky pixelization schemes. The geom package is used to locations and extents within a Cartesian coordinate space.

(Aside: I only just realized that lsst.geom has Sphere-Point that is effectively LonLat from sphgeom and we have both lsst.geom.Angle and lsst.sphgeom.Angle... I feel like if I document this, that questions will be asked...)

For coordinates, we use ICRS everywhere and leave any required coordinate transformations to the Astropy infrastructure.

4.2. Time and Hierarchical Data Structures

The daf_base package provides core data structures for handling time and hierarchical data structures. The DateTime package is used in our C++ data models mostly to represent TAI times. For general manipulations of times in Python we now use astropy.time, following the recommendations from T. Jenness et al. (2016).

The PropertySet and PropertyList classes tallow dict-like data structures to be passed from Python to C++ and back again. The PropertySet represents a hierarchical key/value data structure whereas PropertyList is a flat data structure that is used to represent a FITS header and supports multi-valued keys and key comments.

4.3. Application Framework

afw – this is called the "Application Framework" in T. Axelrod et al. $(2010)^{11}$

- Image/MaskedImage/Exposure
- Table and Catalogs.
- Detection
- Math
- Camera geometry
- FITS I/O
- WCS: AST library (D. S. Berry et al. 2016) backs the world coordinate system handling.

4.4. Co-add Utilities

coadd_utils ?

5. INSTRUMENT SIGNATURE REMOVAL

Raw images from charge-coupled devices (CCDs) contain instrumental effects, such as dark currents, clocking artifacts, or crosstalk between neighboring amplifiers, that can be removed in the data processing. In the Rubin pipeline, this step is called Instrument Signature Removal (ISR) and is the first processing applied to a raw CCD exposure. The package performing the ISR on an exposure, called ip_isr, is detailed below in Sec.

¹⁰ https://astro-metadata-translator.lsst.io

¹¹ This document can be downloaded from https://ls.st/ Document-9349

5.1: it is a critical package for Data Release Pipeline (DRP) used to process LSST images and requires calibration products produced and verified by cp_pipe and cp_verify respectively as described in Sec. 11.3.1. For further information about the life cycle of a calibration product and the procedures it entails, see C. Waters (2025). In Sec. 5.2, we specifically describe the correction of amplifier offset in more detail. A general overview of the ISR steps (based on the model in Fig. 2) and calibration products production (including generation, verification, certification, approval, and distribution) is given in A. A. Plazas Malagón et al. (2024).

We note that we focus here on our approach to performing ISR on data from LSST cameras only (LSST-Cam, ComCam, and LATISS), although we also provide calibration pipelines for other cameras such as DECam and HSC (using a different ISR approach).

5.1. ISR package

Exposures from LSST cameras are affected by instrumental effects, ranging from well-known CCD effects like dark currents or bias levels to effects more recently characterized like tree-rings (see H. Y. Park et al. (2017); H. Park et al. (2020); J. H. Esteves et al. (2023); Y. Okura et al. (2015, 2016) for more details on tree rings in LSSTCam and their impact on science) or the Brighter-Fatter effect as discussed in A. Broughton et al. (2024). Correcting for these effects requires specific calibrations, which we refer to as calibration products. In LSST cameras, calibration products typically are a combined bias, a combined dark, a Photon Transfer Curve (PTC), a crosstalk matrix, a list of defects, and a look-up table of non-linearity parameters. The meaning of these calibration products and the details on the Rubin Observatory's ISR and calibration approach can be found in A. A. Plazas Malagón et al. (2024) and (P. Fagrelius & E. Rykoff 2025).

The ip_isr package¹² contains the codes needed to remove instrument signatures in exposures from LSST cameras and to produce calibration products. To inform our ISR approach, we first designed a model of the instrument, displayed in Fig. 2, based on our knowledge of the hardware and electronics. This model states the order in which the different known instrumental effects happen, from a photon hitting the CCD to the output ADC unit (ADU) signal. In turn, isrTaskLSST in ip_isr sequentially applies corrections of these effects in the opposite order as their effects occur in the model, as we are attempting to remove the impact of those effects on the image. Such corrections are typically done

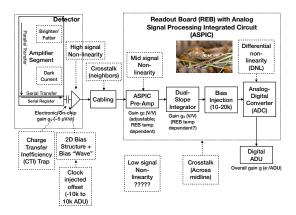


Figure 2. Schematic of the instrument model for detector effects in LSST cameras which isrTaskLSST is based on at the time of publication. More details about the model can be found in P. Fagrelius & E. Rykoff (2025) and A. A. Plazas Malagón et al. (2024).

by calling other Tasks (e.g. overscan, crosstalk, etc.) also implemented in ip_isr.

Overall, isrTaskLSST takes a raw CCD exposure, and calibration products if available, and outputs a Struct containing the output exposure, the postISRCCD output exposure as well as its binned version for easier display, the exposure without interpolation and statistics on the output exposure. IsrTaskLSSTConfig defines the configurations used in this Task, they are set by default to their expected value to perform ISR on a typical LSSTCam exposure. Configuration parameters starting with do will typically correspond to an ISR step, they are turned on or off in the pipelines when producing the different calibration products. We have also developed isrMockLSST which simulates a raw exposure and corresponding calibration products and is used to test isrTaskLSST.

5.2. Amplifier Offset Correction

The amplifier offset correction (commonly referred to as amp-offset correction, or pattern continuity correction) runs as part of the instrument signature removal (ISR) process. This correction is designed to address systematic discontinuities in background sky levels across amplifier boundaries. We believe that these discontinuities arise from electronic biases between adjacent amplifiers, persisting even after the application of dark and flat corrections.

Drawing on the PANSTARRS' Pattern Continuity algorithm (C. Z. Waters et al. 2020), our method aims to eliminate these offsets, thereby preventing problems such as background over-/under-subtraction at amplifier boundaries caused by discontinuities across the detector.

¹² https://github.com/lsst/ip isr

The amp-offset algorithm initially computes a robust flux difference measure between two narrow strips on opposite sides of each amplifier-amplifier interface. Regions containing detected sources, or pixel data which have been masked for other reasons, are not considered. These amp-interface differences are stored in an ampoffset matrix; diagonal entries represent the number of neighboring amplifiers, and off-diagonal entries encode information about the associations between amplifiers. A complementary interface matrix encodes directional information for these associations. Using this information, a least-squares minimization is performed to determine the optimal pedestal value to be added or subtracted to each amp which would reduce the amp-offset between that amplifier and all of its neighboring amplifiers. This method is generalized to support 2D amplifier geometries within a detector, as with LSSTCam, incorporating length-based weighting into the matrices to account for amplifiers that are not square.

6. MEASUREMENT SYSTEM

Measurement plugin system. meas_base

6.1. $meas_algorithms$

6.2. meas deblender

 $6.3.\ meas_extensions_convolved$

6.4. meas_extensions_gaap

meas extensions gaap implements the Gaussian Aperture and PSF photometry (GAaP) algorithm (K. Kuijken 2008). It is an aperture photometry algorithm designed to obtain consistent colors of extended objects (i.e., galaxies). This is done by weighting each (preseeing) region of a galaxy by the same pre-defined 2D Gaussian function in all the bands and is thus largely insensitive to the seeing conditions in the different bands. In practice, this is done by first convolving each object by a kernel (using the same tools described in Sec. 7) so that the PSF is Gaussian and is larger by about 15% (this is configurable). As a second step, each Gaussianized object is then weighted with a Gaussian aperture so that the effective pre-seeing Gaussian aperture is the same for all objects in all the bands. The plugin is configured to use a series of circular Gaussian apertures, an elliptical Gaussian aperture (optionally) that matches the shape of the object in the reference band.

Although the two-step approach is motivated by the original implementation in K. Kuijken (2008), the implementation of this algorithm within the broader context of the measurement framework makes it different from the implementation used in the Kilo-Degree Survey (KiDS; A. H. Wright et al. 2025). In particular, because

neighboring objects are replaced with noise before measurement, Gaussianization of the PSF does not result in increased blending as mentioned in Appendix A2 of K. Kuijken et al. (2015). Furthermore, the uncertainty handling is different. Correlations in noise introduced due to PSF-Gaussianization is included in the uncertainty estimates. However, because only per-pixel noise variance is tracked, the noise treatment is forced to assume that the noise is uncorrelated to begin with which is not true on the coadds. See A. Kannawadi (2022) for more details on the implementation details.

Note that this measurements from this plugin do not produce total fluxes, but should only be used to obtain colors. For total fluxes, measurements from cModel or MultiProFit (c.f. Sec. 6.12) are recommended.

6.5. meas_extensions_photometryKron 6.6. PSF Modeling

Within the pipeline, three distinct PSF models are defined: pcaPsf, PSFex, and Piff. Only PSFex and Piff are currently used. PSFex is a fast, and less accurate PSF estimation and is wrapped within meas_extensions_psfex. In contrast, Piff is a slightly slower, but more accurate PSF estimation that is incorporated in meas_extensions_piff. Both meas_extensions_psfex and meas_extensions_piff are described below.

6.6.1. meas_extensions_psfex 6.6.2. meas extensions piff

The meas_extensions_piff package is a wrapper around the PSF package Piff used to estimate and compute the PSF (M. Jarvis et al. 2021a,b). Piff is a modular package that supports various PSF models, interpolation schemes, coordinate systems, and can operate on a per-CCD basis or over the full field of view, as indicated by its name. The implementation within meas_extensions_piff does not exploit the full modularity of Piff; instead, it closely follows the method used for cosmic shear analysis like in DES (M. Jarvis et al. 2021b; T. Schutt et al. 2025).

The PSF model utilized is a PixelGrid, and the interpolation is performed using BasisPolynomial interpolation (M. Jarvis et al. 2021b). Modeling is executed per CCD and can employ either pixel or sky coordinates. A key difference from PSFex is that Piff implements outlier rejection based on chi-squared criteria (see M. Jarvis et al. 2021b, for more details).

Most of the configuration described here is adjustable through the PiffPsfDeterminerConfig that are exposing some of the configurable parameters of Piff and can be fine-tuned for a dedicated survey. However, some important features that were implemented by M. Jarvis et al. (2021b) and T. Schutt et al. (2025) have not yet been enabled but will be available in the near future. While M. Jarvis et al. (2021b) operates in sky coordinates with a WCS that includes CCD distortions such as treerings, meas_extensions_piff can work in sky coordinates and incorporate WCS; as written, it does not, however, account for CCD distortions like tree rings. Additionally, although T. Schutt et al. (2025) incorporated a color correction to account for chromatic effects on the PSF, this correction has not yet been implemented in meas_extensions_piff.

6.7. meas_extensions_scarlet
6.8. meas_extensions_shapeHSM

The meas_extensions_shapeHSM package contains the plugins to measure the shapes of objects. The plugins measure the moments of the sources and PSFs with adaptive Gaussian weights. The algorithm was initially described in C. Hirata & U. Seljak (2003) and was modified later in R. Mandelbaum et al. (2005). The implementation of these algorithms lives within the hsm module of the GalSim package (B. T. P. Rowe et al. 2015). meas_extensions_shapeHSM now interacts directly with the Python layer of GalSim to make the measurements.

The base plugin for measuring moments is the HsmMomentsPlugin and is the parclass of the HsmSourceMomentsPlugin and HsmPsfMomentsPlugin which are specialized measure on the sources (and objects) and PSFs respectively. HsmSourceMomentsRoundPlugin is a further specialized plugin that measures the moments with circular Gaussian weights instead of the elliptical ones in HsmSourceMomentsPlugin. HsmPsfMomentsDebiasedPlugin adds noise to the PSF image to degrade it to have the same signal-to-noise ratio (SNR) as the source image. This makes the ellipticity calculated from this plugin have the same bias as the source ellipticity The PSF moments from this plugin should be used when calculating ellipticity residuals so the bias is largely cancelled. Having the various specializations as distinct plugins allows an object to be measured under different configurations simultaneously and included in the output catalogs.

In addition to the plugins that measure (adaptive) weighted moments, there are also a series of HsmShape plugins to estimate the PSF-corrected ellipticities of objects. In particular, the outputs from HsmShapeRegaussPlugin have been used to measure weak gravitation lensing signals in the Hyper Suprime-

Cam SSP data (R. Mandelbaum et al. 2018; X. Li et al. 2022).

6.9. meas_extensions_simpleShape
6.10. meas_extensions_trailedSources
6.11. meas_modelfit
6.12. meas_extensions_multiprofit
6.13. Reliability Scoring

The meas_transiNet package determines a numerical score for input cutout images using pre-trained machine-learning models. Image differencing may produce false detections, so time-domain surveys chacteristically use machine learning classifiers to distinguish astrophysical sources from artifacts ("Real/Bogus;" e.g., J. S. Bloom et al. 2012; D. A. Goldstein et al. 2015; D. A. Duev et al. 2019).

The meas_transiNet defines "model packages" that consist of a python architecture class, a PyTorch (A. Paszke et al. 2019) weights file, and associated metadata. The inference task may be configured to load a model package from disk or from the Butler.

The RBTransiNetTask PipelineTask takes as input three square cutouts of configurable size from the science, template, and difference images centered on the location of a source. These images are concatenated, batched into Torch blobs, and passed to the model for inference. Either CPU or GPU backends may be used for inference. The output of the task is a single float ranging from 0–1 for each cutout triplet, with higher values indicating that the DIASource is more likely to be astrophysical. These reliability scores are then joined with the DIASource catalogs by a later transformation task. Detailed discussion of the model architecture, training, and performance will be presented in T. Acero Cuellar et. al (in prep.).

7. DIFFERENCE IMAGING

Difference imaging is implemented in ip_diffim, and is divided into three steps. First, a base template image is constructed with getTemplate by warping previously-generated coadded images to the WCS and bounding box of the science image. Then the warped template is subtracted from the science image using one of several available algorithms in subtractImages, which produces a temporary difference image. Finally, peaks are detected on the difference image and DiaSources are measured in detectAndMeasure. The final difference image with updated mask planes is written along with the DiaSource catalog.

$7.1. \ subtractImages$

The primary implementation of image subtraction used by subtractImages is based on C. Alard & R. H. Lupton (1998), and uses spatially-varying Gaussian basis functions for the fit. The PSF-matching kernel can be constructed for either the science or the template image, and the resulting difference image is decorrelated D. J. Reiss & R. H. Lupton (2016). Optionally, the science image can be preconvolved with its own PSF before PSF-matching, producing a Score image analogous to B. Zackay et al. (2016).

7.2. detectAndMeasure

Positive and negative peaks are detected by thresholding the Score image if it is available. Otherwise, the difference image is smoothed with a Gaussian of the same width as the PSF of the science image, and thresholds are taken on the smoothed image. Contiguous pixels around each peak that are statistically brighter than the background are grouped into source footprints, and any overlapping footprints are merged. Footprints that contain both a positive and a negative peak are fit as dipoles. The dipole fit simultaneously solves for the negative and positive lobe centroids and fluxes using nonlinear least squares minimization. DiaSources that are not classified as dipoles instead fall back on an SDSSstyle centroid (J. R. Pier et al. 2003). Finally, all configured measurement plugins are run, including HSM shape measurements (C. Hirata & U. Seljak 2003; R. Mandelbaum et al. 2005) and trailed source measurements.

8. ASTROMETRIC AND PHOTOMETRIC CALIBRATION

8.1. Astrometric Calibration

meas_astrom gbdes (G. M. Bernstein 2022; G. M. Bernstein et al. 2017)

Jointcal no longer discussed.

8.2. Photometric Calibration

8.3. fqcmcal

Global photometric calibration is computed by use of the Forward Global Calibration Method (FGCM D. L. Burke et al. 2018), as adopted for LSST Science Pipelines (P. Fagrelius & E. Rykoff 2025). This global calibration algorithm makes use of repeated observations of stars in all ugrizy bands, combining a forward model of the atmospheric parameters with instrumental throughputs measured with auxiliary information. In this way we simulateously constrain the atmospheric model as well as standardized top-of-atmosphere (TOA) star fluxes over a wide range of star colors, including

full chromatic corrections from the instrument and atmosphere.

Running fgcmcal first requires generating a look-up table. The input to the look-up table includes the effect of a MODTRAN (A. Berk et al. 1999) atmospheric model at the elevation of the observatory, as well as the throughput as a function of wavelength and position from the optics, filters, and detector quantum efficiency. The quality of the output (in terms of repeatability of bright isolated stars across a wide range of colors) depends on the knowledge of the instrumental throughput.

The primary goal of fgcmcal is to provide a uniform relative photometric calibration of the survey. For "absolute" (relative) calibration, a reference catalog can be used as an additional constraint on the fit. Thus, the overall throughput output by fgcmcal depends on the reference catalog. This can be checked with (e.g.) specific white dwarfs or CALSPEC (R. C. Bohlin 2007) stars in the survey. However, the relative spatial and chromatic calibration of the fgcmcal calibration means that the absolute calibration reduces to a set of 6 numbers (one for each band, or one overall throughput and 5 absolute colors).

9. SOURCE ASSOCIATION

The ap_association package contains multiple tasks for standardizing newly detected DiaSources and associating them with existing or new DiaObjects. Standardization converts the output catalogs from 7 to the format specified in sdm_schemas (Sec. 12), and applies filtering consistent with (W. O'Mullane et al. 2024). Once DiaSource catalogs are standardized, they are associated to DiaObjects in either of two modes: Data Release Production (DRP) or Alert Production (AP). Both implementations use the Pessimistic Pattern Matcher B (C. B. Morrison 2018) to score and match DiaSources, but differ in how DiaObjects are stored and how visits are ordered.

- DRP association loads all DiaSource catalogs from a set time period overlapping a single patch at once, and creates new DiaObjects for matched DiaSources from all visits simultaneously.
- AP association processes a single visit at a time, and creates new DiaObjects incrementally from unassociated DiaSources. DiaObjects and their associated DiaSources are stored in the Alert Production Database (APDB) (Sec. 9.2).

After association, an additional filtering step may be applied to DiaSources with no matched DiaObject of Solar System object (Sec 9.1). Properties of the source

such as its reliability score (Sec. 6.13, source flags, or signal-to-noise cuts may be used to drop detections that are likely to be false detections and avoid creating erroneous new DiaObjects.

9.1. Solar System object association

Ephemerides from known Solar System objects are preloaded with approximate locations for the expected time of observation in mpSkyEphemerisQuery. Since these are loaded in Prompt Processing before the science image arrives and is calibrated, the orbital fit parameters are used in association to correct the position to the midpoint of the observation, including the shutter motion profile since the shutter takes a second to cross the focal plane. Solar System objects are associated to DiaSources using the closest match within a configurable radius.

9.2. Alert Production Database (APDB)

The Alert Production Database (APDB: A. Salnikov & J. McCormick 2024)) supports SQL, Postgres, and Cassandra database formats. The previous history of DiaObjects, DiaSources, and DiaForcedSources for the region containing the science image is loaded with loadDiaCatalogs, which are passed to diaPipe for association. Loading is split from the association step to enable preloading of catalogs from the database in Prompt Processing during the interval when the next visit has been scheduled but the images have not yet been taken. When AP-style association is run outside of Prompt Processing, it is therefore essential to process all association tasks in strict visit order to prevent loading catalogs from the APDB prematurely and losing DiaObject history in association.

10. ALERT GENERATION

In order to to enable real-time science, the AP pipelines generate alert packets for each detected DI-ASource. These packets are serialized in Apache Avro¹³ format and then transmitted to community alert brokers via Kafka for further processing. M. Patterson et al. (2020) provides a high-level overview of the alert system.

Within the pipelines, alert packets are constructed by packageAlertsTask within ap association. Alert packets contain the triggering DIASource record; the associated DIAObject or SSObject record; up to twelve months of past history from DIASources, DIAForced-Sources, and/or upper limits; and cutout images of the science, template, and difference images centered at the position of the cutout. Cutouts are provided as FITS

Avro schemas are stored in the alert_packet pack-They are derived from the corresponding AP schemas in sdm_schemas used to instantiate the AP databases.

11. PIPELINES

11.1. Pipeline Support

The Task Python class provides a standard interface for how to execute an algorithm. The PipelineTask variant provides stronger guarantees on configuration and provides a means by which the pipeline execution framework can determine how to link a task into a pipeline and how to determine what type of data should be read from a Butler and what should be written out to a Butler.

Describe pex_config because it's not described anywhere.

Pipeline in YAML.

Show plot of a simple pipeline visualization.

Graph building.

Show plot of a graph where a pipeline now includes specific datasets as inputs.

Describe that provenance is stored in the output files and in the graph itself.

Execution system and how BPS provides the interface between a quantum graph and a workflow system.

> 11.2. Task library 11.2.1. pipe tasks 11.2.2. drp_tasks

11.3. Pipeline Collections

11.3.1. Calibration pipelines

The pipelines to build calibration products (cp) for the LSST cameras are defined in cp_pipe¹⁴. They set isrTaskLSST configuration parameters needed for each calibration product, by enabling all the sequential steps of the ISR task up to the step before the correction being generated. In some cases, configurations also specify whether to combine exposures (for bias or dark exposures for instance) and to bin exposures to support display.

Once calibration products are produced, they are "verified" (see C. Waters (2025) for more details) using

images serialized by the astropy CCDData class, and include image, variance, and mask planes along with WCS information and an image of the approximate PSF.

 $^{^{14}\ \}mathrm{https://github.com/lsst/cp_pipe}$ and see documentation at https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-13 https://avro.apache.org/ calibrations.html

cp_verify¹⁵ pipelines by checking they pass metrics defined in R. Lupton et al. (2025). In this case, verify configuration parameters enable all corrections in the ISR task up to and including the application of the correction being verified. As a result, the calibration products can then be certified to be available in the butler and used to ISR an exposure.

11.3.2. drp_pipe 11.3.3. ap_pipe

The ap_pipe package defines the pipeline(s) to be used for real-time Alert Production processing (K.-T. Lim 2022). These pipelines include instrument signature removal (§5), calibration (§??), measurement plugins (§6), image differencing (§7), source association (§9), and alert generation (§10). Some of these tasks are shared with the pipelines in drp_pipe, but configured to prioritize speed over strict quality; for example, they use a minimal set of measurement plugins.

ap_pipe currently has pipeline variants for LSSTCam, LSSTComCam, LATISS, the Rubin Observatory simulators, Hyper-SuprimeCam, and the Dark Energy Camera. Because these variants serve as testbeds for AP-specific algorithms and configuration settings, they are, as much as possible, the "same" pipeline, differing almost entirely in loading instrument defaults from obs packages (§3.2). The only other customization is an extra task for handling DECam's inter-chip crosstalk, which does not have an equivalent for Rubin instruments.

12. CATALOG SCHEMAS

Must transform pipeline products from the internal data model to the public data model defined in M. Jurić et al. (2023).

sdm_schemas felis (J. McCormick et al. 2024)

13. DISPLAY ABSTRACTIONS

The Python object representing an image with metadata is a bespoke object not understand by generic tooling. To display an image we provide a display abstraction layer that allows the image to be displayed and graphics overlaid by using a plugin mechanism.

In some plugins the pixel data can be extracted from the exposure object and sent directly to display, in other plugins we form a simple single HDU FITS image (possibly with simplified world coordinates) and pass the temporary FITS file to the display system. There a currently plugins for matplotlib (J. D. Hunter 2007), Firefly (W. Roby et al. 2020), SAOImage DS9 (W. A. Joye & E. Mandel 2003), and Ginga (E. Jeschke et al. 2013, via Astrowidgets).

14. DATA ANALYSIS

analysis_tools
verify

faro — do not document this as we are no longer using it for primary metrics calculation.

15. VALIDATING THE SCIENCE PIPELINES

We use small, of order of a few gigabyte, datasets that can be processed as part of continuous integration. These take of order an hour to process. There are regular re-processings of standard datasets that can take a few days to process. For formal data releases there are additional metrics calculated and a test report is issued, such as the one made available with release 28.0 (J. Carlin 2025).

15.1. Source Injection

16. CONCLUSIONS

The LSST Science Pipelines Software has been developed over 20 years to support the processing of the Legacy Survey of Space and Time.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the National Science Foundation through Cooperative Agreement AST-1258333 and Cooperative Support Agreement AST-1202910 managed by the Association of Universities for Research in Astronomy (AURA), and the Department of Energy under Contract No. DE-AC02-76SF00515 with the SLAC National Accelerator Laboratory managed by Stanford University. Additional Rubin Observatory funding comes from private donations, grants to universities, and in-kind support from LSSTC Institutional Members.

 $Facilities: \mbox{ Rubin:Simonyi (LSSTCam), Rubin:1.2m} \mbox{ (LATISS)}$

Software: ndarray (https://github.com/ndarray/ndarray), astropy (Astropy Collaboration et al. 2022), pytest (H. Krekel 2017), matplotlib (J. D. Hunter 2007), galsim (B. T. P. Rowe et al. 2015), numpy (C. R. Harris et al. 2020), gbdes (G. M. Bernstein 2022), Starlink's (D. Berry et al. 2022) AST (D. S. Berry et al. 2016), fgcm (https://github.com/erykoff/fgcm),

REFERENCES

- Alard, C., & Lupton, R. H. 1998, A Method for Optimal Image Subtraction, ApJ, 503, 325, doi: 10.1086/305984
- Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f
- Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., et al. 2022, The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74
- Axelrod, T., Connolly, A., Ivezic, Z., et al. 2004, The LSST Data Processing Pipeline, in American Astronomical Society Meeting Abstracts, Vol. 205, American Astronomical Society Meeting Abstracts, 108.11
- Axelrod, T., Kantor, J., Lupton, R. H., & Pierfederici, F.
 2010, An open source application framework for astronomical imaging pipelines, in Proc. SPIE, Vol. 7740,
 Software and Cyberinfrastructure for Astronomy, ed.
 N. M. Radziwill & A. Bridger, 15, doi: 10.1117/12.857297
- Berk, A., Anderson, G. P., Bernstein, L. S., et al. 1999, MODTRAN4 radiative transfer modeling for atmospheric correction, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 3756, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, ed. A. M. Larar, International Society for Optics and Photonics (SPIE), 348 – 353, doi: 10.1117/12.366388
- Bernstein, G. M. 2022, gbdes: DECam instrumental signature fitting and processing programs,, Astrophysics Source Code Library, record ascl:2210.011
- Bernstein, G. M., Armstrong, R., Plazas, A. A., et al. 2017, Astrometric Calibration and Performance of the Dark Energy Camera, PASP, 129, 074503, doi: 10.1088/1538-3873/aa6c55
- Berry, D., Graves, S., Bell, G. S., et al. 2022, Starlink The Original and Best, in Astronomical Society of the Pacific Conference Series, Vol. 532, Astronomical Data Analysis Software and Systems XXX, ed. J. E. Ruiz, F. Pierfedereci, & P. Teuben, 559
- Berry, D. S., Warren-Smith, R. F., & Jenness, T. 2016, AST: A library for modelling and manipulating coordinate systems, Astronomy and Computing, 15, 33, doi: 10.1016/j.ascom.2016.02.003
- 15 https://github.com/lsst/cp_verify

- Bloom, J. S., Richards, J. W., Nugent, P. E., et al. 2012, Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era, PASP, 124, 1175, doi: 10.1086/668468
- Bohlin, R. C. 2007, HST Stellar Standards with 1% Accuracy in Absolute Flux, in Astronomical Society of the Pacific Conference Series, Vol. 364, The Future of Photometric, Spectrophotometric and Polarimetric Standardization, ed. C. Sterken, 315, doi: 10.48550/arXiv.astro-ph/0608715
- Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, The Hyper Suprime-Cam software pipeline, PASJ, 70, S5, doi: 10.1093/pasj/psx080
- Boulade, O., Charlot, X., Abbon, P., et al. 2003, MegaCam: the new Canada-France-Hawaii Telescope wide-field imaging camera, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4841, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes, ed. M. Iye & A. F. M. Moorwood, 72–81, doi: 10.1117/12.459890
- Broughton, A., Utsumi, Y., Plazas Malagón, A. A., et al. 2024, Mitigation of the Brighter-fatter Effect in the LSST Camera, PASP, 136, 045003, doi: 10.1088/1538-3873/ad3aa2
- Burke, D. L., Rykoff, E. S., Allam, S., et al. 2018, Forward Global Photometric Calibration of the Dark Energy Survey, AJ, 155, 41, doi: 10.3847/1538-3881/aa9f22
- Cai, M., Xu, Z., Fan, L., et al. 2025, The 2.5-meter Wide Field Survey Telescope Real-time Data Processing Pipeline I: From raw data to alert distribution, arXiv e-prints, arXiv:2501.15018, doi: 10.48550/arXiv.2501.15018
- Carlin, J. 2025, Characterization Metric Report: Science Pipelines Version 28.0.0, Data Management Test Report DMTR-451, Vera C. Rubin Observatory. https://dmtr-451.lsst.io/
- DePoy, D. L., Abbott, T., Annis, J., et al. 2008, The Dark Energy Camera (DECam), in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
 Vol. 7014, Ground-based and Airborne Instrumentation for Astronomy II, ed. I. S. McLean & M. M. Casali,
 70140E, doi: 10.1117/12.789466
- Duev, D. A., Mahabal, A., Masci, F. J., et al. 2019, Real-bogus classification for the Zwicky Transient Facility using deep learning, MNRAS, 489, 3582, doi: 10.1093/mnras/stz2357

- Esteves, J. H., Utsumi, Y., Snyder, A., et al. 2023,
 Photometry, Centroid and Point-spread Function
 Measurements in the LSST Camera Focal Plane Using
 Artificial Stars, PASP, 135, 115003,
 doi: 10.1088/1538-3873/ad0a73
- Fagrelius, P., & Rykoff, E. 2025, Rubin Baseline Calibration Plan, Commissioning Technical Note SITCOMTN-086, Vera C. Rubin Observatory. https://sitcomtn-086.lsst.io/
- Fausti, A. 2023, Sasquatch: beyond the EFD, SQuaRE Technical Note SQR-068, Vera C. Rubin Observatory. https://sqr-068.lsst.io/
- Fausti Neto, A., Economou, F., Reuter, M. A., et al. 2024, Sasquatch: Rubin Observatory metrics and telemetry service, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 13101, Software and Cyberinfrastructure for Astronomy VIII, ed. J. Ibsen & G. Chiozzi, 131011M, doi: 10.1117/12.3019081
- Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, The Dark Energy Camera, The Astronomical Journal, 150, 150, doi: 10.1088/0004-6256/150/5/150
- Goldstein, D. A., D'Andrea, C. B., Fischer, J. A., et al. 2015, Automated Transient Identification in the Dark Energy Survey, AJ, 150, 82, doi: 10.1088/0004-6256/150/3/82
- Gower, M., Kowalik, M., Lust, N. B., Bosch, J. F., & Jenness, T. 2022, Adding Workflow Management Flexibility to LSST Pipelines Execution, arXiv e-prints, arXiv:2211.15795, doi: 10.48550/arXiv.2211.15795
- Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Array programming with NumPy, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2
- Hirata, C., & Seljak, U. 2003, Shear calibration biases in weak-lensing surveys, MNRAS, 343, 459, doi: 10.1046/j.1365-8711.2003.06683.x
- Hunter, J. D. 2007, Matplotlib: A 2D Graphics Environment, Computing in Science and Engineering, 9, 90, doi: 10.1109/MCSE.2007.55
- Ingraham, P., Clements, A. W., Ribeiro, T., et al. 2020,
 Vera C. Rubin Observatory auxiliary telescope
 commissioning as a control system pathfinder, in Society
 of Photo-Optical Instrumentation Engineers (SPIE)
 Conference Series, Vol. 11452, Software and
 Cyberinfrastructure for Astronomy VI, ed. J. C. Guzman
 & J. Ibsen, 114520U, doi: 10.1117/12.2561112
- Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, LSST: From Science Drivers to Reference Design and Anticipated Data Products, ApJ, 873, 111, doi: 10.3847/1538-4357/ab042c

- Jarvis, M., Meyers, J., Leget, P.-F., & Davis, C. 2021a, Piff: PSFs In the Full FOV, Astrophysics Source Code Library, record ascl:2102.024
- Jarvis, M., Bernstein, G. M., Amon, A., et al. 2021b, Dark Energy Survey year 3 results: point spread function modelling, MNRAS, 501, 1282, doi: 10.1093/mnras/staa3679
- Jenness, T. 2020, Modern Python at the Large Synoptic Survey Telescope, in Astronomical Society of the Pacific Conference Series, Vol. 522, Astronomical Data Analysis Software and Systems XXVII, ed. P. Ballester, J. Ibsen, M. Solar, & K. Shortridge, 541, doi: 10.48550/arXiv.1712.00461
- Jenness, T., Economou, F., Findeisen, K., et al. 2018, LSST data management software development practices and tools, in Proc. SPIE, Vol. 10707, Software and Cyberinfrastructure for Astronomy V, 1070709, doi: 10.1117/12.2312157
- Jenness, T., Bosch, J., Owen, R., et al. 2016, Investigating interoperability of the LSST data management software stack with Astropy, in Proc. SPIE, Vol. 9913, Software and Cyberinfrastructure for Astronomy IV, 99130G, doi: 10.1117/12.2231313
- Jenness, T., Bosch, J. F., Salnikov, A., et al. 2022, The
 Vera C. Rubin Observatory Data Butler and pipeline
 execution system, in Society of Photo-Optical
 Instrumentation Engineers (SPIE) Conference Series,
 Vol. 12189, Software and Cyberinfrastructure for
 Astronomy VII, 1218911, doi: 10.1117/12.2629569
- Jeschke, E., Inagaki, T., & Kackley, R. 2013, Introducing the Ginga FITS Viewer and Toolkit, in Astronomical Society of the Pacific Conference Series, Vol. 475, Astronomical Data Analysis Software and Systems XXII, ed. D. N. Friedel, 319
- Joye, W. A., & Mandel, E. 2003, New Features of SAOImage DS9, in Astronomical Society of the Pacific Conference Series, Vol. 295, Astronomical Data Analysis Software and Systems XII, ed. H. E. Payne, R. I. Jedrzejewski, & R. N. Hook, 489
- Jurić, M., Ciardi, D., Dubois-Felsmann, G., & Guy, L. 2019, LSST Science Platform Vision Document, Systems Engineering Controlled Document LSE-319, Vera C. Rubin Observatory. https://lse-319.lsst.io/
- Jurić, M., Kantor, J., Lim, K. T., et al. 2017, The LSST
 Data Management System, in Astronomical Society of the Pacific Conference Series, Vol. 512, Astronomical
 Data Analysis Software and Systems XXV, ed. N. P. F.
 Lorente, K. Shortridge, & R. Wayth, 279, doi: 10.48550/arXiv.1512.07914

- Jurić, M., Axelrod, T., Becker, A., et al. 2023, Data Products Definition Document, Systems Engineering Controlled Document LSE-163, Vera C. Rubin Observatory. https://lse-163.lsst.io/
- Kahn, S. M., Kurita, N., Gilmore, K., et al. 2010, Design and development of the 3.2 gigapixel camera for the Large Synoptic Survey Telescope, in Society of Photo-Optical Instrumentation Engineers (SPIE)
 Conference Series, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, ed. I. S. McLean,
 S. K. Ramsay, & H. Takami, 0, doi: 10.1117/12.857920
- Kannawadi, A. 2022, Consistent galaxy colors with Gaussian-Aperture and PSF photometry, Data Management Technical Note DMTN-190, Vera C. Rubin Observatory. https://dmtn-190.lsst.io/
- Karavakis, E., Guan, W., Yang, Z., et al. 2024, Integrating the PanDA Workload Management System with the Vera C. Rubin Observatory, in European Physical Journal Web of Conferences, Vol. 295, European Physical Journal Web of Conferences (EDP), 04026, doi: 10.1051/epjconf/202429504026
- Knight, S. 2005, Building software with SCons, Computing in Science Engineering, 7, 79, doi: 10.1109/MCSE.2005.11
- Krekel, H. 2017, pytest: helps you write better programs, $\label{eq:https:/docs.pytest.org} \text{https://docs.pytest.org}$
- Kuijken, K. 2008, GaaP: PSF- and aperture-matched photometry using shapelets, A&A, 482, 1053, doi: 10.1051/0004-6361:20066601
- Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015, Gravitational lensing analysis of the Kilo-Degree Survey, MNRAS, 454, 3500, doi: 10.1093/mnras/stv2140
- Lange, T., Nordby, M., Pollek, H., et al. 2024, Integrating the LSST camera, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
 Vol. 13096, Ground-based and Airborne Instrumentation for Astronomy X, ed. J. Bryant, K. Motohara, & J. R. D. Vernet, 130961O, doi: 10.1117/12.3019302
- Li, X., Miyatake, H., Luo, W., et al. 2022, The three-year shear catalog of the Subaru Hyper Suprime-Cam SSP Survey, PASJ, 74, 421, doi: 10.1093/pasj/psac006
- Lim, K.-T. 2022, Proposal and Prototype for Prompt Processing, Data Management Technical Note DMTN-219, Vera C. Rubin Observatory. https://dmtn-219.lsst.io/
- Lupton, R., Malagón, A. A. P., & Waters, C. 2025, Verifying LSST Calibration Data Products, Data Management Technical Note DMTN-101, Vera C. Rubin Observatory. https://dmtn-101.lsst.io/

- Lust, N. B., Jenness, T., Bosch, J. F., et al. 2023, Data management and execution systems for the Rubin Observatory Science Pipelines, arXiv e-prints, arXiv:2303.03313, doi: 10.48550/arXiv.2303.03313
- Mandelbaum, R., Hirata, C. M., Seljak, U., et al. 2005, Systematic errors in weak lensing: application to SDSS galaxy-galaxy weak lensing, MNRAS, 361, 1287, doi: 10.1111/j.1365-2966.2005.09282.x
- Mandelbaum, R., Miyatake, H., Hamana, T., et al. 2018, The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey, PASJ, 70, S25, doi: 10.1093/pasj/psx130
- McCormick, J., Dubois-Felsmann, G. P., Salnikov, A., Van Klaveren, B., & Jenness, T. 2024, Using Felis to Represent the Semantics and Metadata of Astronomical Data Catalogs, arXiv e-prints, arXiv:2412.09721, doi: 10.48550/arXiv.2412.09721
- Miyazaki, S., Komiyama, Y., Kawanomoto, S., et al. 2018, Hyper Suprime-Cam: System design and verification of image quality, PASJ, 70, S1, doi: 10.1093/pasj/psx063
- Morrison, C. B. 2018, Pessimistic Pattern Matching for LSST, Data Management Technical Note DMTN-031, Vera C. Rubin Observatory. https://dmtn-031.lsst.io/
- Mueller, F., et al. 2023, Qserv: A Distributed Petascale Database for the LSST Catalogs, in ASP Conf. Ser., Vol. TBD, ADASS XXXII, ed. S. Gaudet, S. Gwyn, P. Dowler, D. Bohlender, & A. Hincks (San Francisco: ASP), in press. https://dmtn-243.lsst.io
- Mullaney, J. R., Makrygianni, L., Dhillon, V., et al. 2021, Processing GOTO data with the Rubin Observatory LSST Science Pipelines I: Production of coadded frames, PASA, 38, e004, doi: 10.1017/pasa.2020.45
- Okura, Y., Petri, A., May, M., Plazas, A. A., & Tamagawa, T. 2016, Consequences of CCD Imperfections for Cosmology Determined by Weak Lensing Surveys: From Laboratory Measurements to Cosmological Parameter Bias, The Astrophysical Journal, 825, 61, doi: 10.3847/0004-637X/825/1/61
- Okura, Y., Plazas, A. A., May, M., & Tamagawa, T. 2015, Spurious shear induced by the tree rings of the LSST CCDs, Journal of Instrumentation, 10, C08010, doi: 10.1088/1748-0221/10/08/C08010
- O'Mullane, W., Economou, F., Lim, K.-T., et al. 2022, Software Architecture and System Design of Rubin Observatory, arXiv e-prints, arXiv:2211.13611, doi: 10.48550/arXiv.2211.13611

- O'Mullane, W., Economou, F., Huang, F., et al. 2024, Rubin Science Platform on Google: the story so far, in Astronomical Society of the Pacific Conference Series, Vol. 535, Astromical Data Analysis Software and Systems XXXI, ed. B. V. Hugo, R. Van Rooyen, & O. M. Smirnov, 227, doi: 10.48550/arXiv.2111.15030
- O'Mullane, W., Allbery, R., AlSayyad, Y., et al. 2024, Rubin Observatory Data Security Standards Implementation, Data Management Technical Note DMTN-199, Vera C. Rubin Observatory. https://dmtn-199.lsst.io/
- Padmanabhan, N., Lupton, R., & Loomis, C. 2015, EUPS
 a Tool to Manage Software Dependencies,
 https://github.com/RobertLuptonTheGood/eups
- Park, H., Karpov, S., Nomerotski, A., & Tsybychev, D. 2020, Tree rings in Large Synoptic Survey Telescope production sensors: its dependence on radius, wavelength, and back bias voltage, Journal of Astronomical Telescopes, Instruments, and Systems, 6, 011005, doi: 10.1117/1.JATIS.6.1.011005
- Park, H. Y., Nomerotski, A., & Tsybychev, D. 2017, Properties of tree rings in LSST sensors, Journal of Instrumentation, 12, C05015, doi: 10.1088/1748-0221/12/05/C05015
- Paszke, A., Gross, S., Massa, F., et al. 2019, PyTorch: An Imperative Style, High-Performance Deep Learning Library, in Advances in Neural Information Processing Systems, ed. H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, & R. Garnett, Vol. 32 (Curran Associates, Inc.), doi: 10.48550/arXiv.1912.01703
- Patterson, M., Bellm, E., Swinbank, J., & Nelson, S. 2020, Design of the LSST Alert Distribution System, Data Management Technical Note DMTN-093, Vera C. Rubin Observatory. https://dmtn-093.lsst.io/
- Pier, J. R., Munn, J. A., Hindsley, R. B., et al. 2003, Astrometric Calibration of the Sloan Digital Sky Survey, AJ, 125, 1559, doi: 10.1086/346138
- Plazas Malagón, A. A., Waters, C., Broughton, A., et al. 2024, Instrument Signature Removal and Calibration Products for the Rubin Legacy Survey of Space and Time, arXiv e-prints, arXiv:2404.14516, doi: 10.48550/arXiv.2404.14516
- Reiss, D. J., & Lupton, R. H. 2016, Implementation of Image Difference Decorrelation, Data Management Technical Note DMTN-021, Vera C. Rubin Observatory. https://dmtn-021.lsst.io/

- Roby, W., Wu, X., Dubois–Felmann, G., et al. 2020, Firefly and Python New Ways to Visualize Data on the Web, in Astronomical Society of the Pacific Conference Series, Vol. 527, Astronomical Data Analysis Software and Systems XXIX, ed. R. Pizzo, E. R. Deul, J. D. Mol, J. de Plaa, & H. Verkouter, 243
- Roodman, A., Rasmussen, A., Bradshaw, A., et al. 2024, LSST camera verification testing and characterization, in Ground-based and Airborne Instrumentation for Astronomy X, ed. J. J. Bryant, K. Motohara, & J. R. D. Vernet, Vol. 13096, International Society for Optics and Photonics (SPIE), 130961S, doi: 10.1117/12.3019698
- Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015, GALSIM: The modular galaxy image simulation toolkit, Astronomy and Computing, 10, 121, doi: 10.1016/j.ascom.2015.02.002
- Salnikov, A., & McCormick, J. 2024, Current status of APDB and PPDB implementation, Data Management Technical Note DMTN-293, Vera C. Rubin Observatory. https://dmtn-293.lsst.io/
- Schutt, T., Jarvis, M., Roodman, A., et al. 2025, Dark Energy Survey Year 6 Results: Point-Spread Function Modeling, The Open Journal of Astrophysics, 8, 26, doi: 10.33232/001c.132299
- Sutherland, W., Emerson, J., Dalton, G., et al. 2015, The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance, A&A, 575, A25, doi: 10.1051/0004-6361/201424973
- Thomas, S. J., Barr, J., Callahan, S., et al. 2022, Rubin Observatory Simonyi Survey Telescope status overview, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 12182, Ground-based and Airborne Telescopes IX, ed. H. K. Marshall, J. Spyromilio, & T. Usuda, 121820W, doi: 10.1117/12.2630226
- Utsumi, Y., Antilogus, P., Astier, P., et al. 2024, LSST
 Camera focal plane optimization, in X-Ray, Optical, and
 Infrared Detectors for Astronomy XI, ed. A. D. Holland
 & K. Minoglou, Vol. 13103, International Society for
 Optics and Photonics (SPIE), 131030W,
 doi: 10.1117/12.3019117
- van Rossum, G. 2013, PEP 8 Style Guide for Python Code, Python Software Foundation. https://www.python.org/dev/peps/pep-0008/
- Wang, D. L., Monkewitz, S. M., Lim, K.-T., & Becla, J. 2011, Qserv: A Distributed Shared-nothing Database for the LSST Catalog, in State of the Practice Reports, SC '11 (New York, NY, USA: ACM), 12:1–12:11, doi: 10.1145/2063348.2063364

- Wang, S.-Y., Huang, P.-J., Chen, H.-Y., et al. 2020, Prime Focus Spectrograph (PFS): the prime focus instrument, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 11447, Ground-based and Airborne Instrumentation for Astronomy VIII, ed. C. J. Evans, J. J. Bryant, & K. Motohara, 114477V, doi: 10.1117/12.2561194
- Waters, C. 2025, Calibration Generation, Verification, Acceptance, and Certification., Data Management Technical Note DMTN-222, Vera C. Rubin Observatory. https://dmtn-222.lsst.io/
- Waters, C. Z., Magnier, E. A., Price, P. A., et al. 2020, Pan-STARRS Pixel Processing: Detrending, Warping, Stacking, ApJS, 251, 4, doi: 10.3847/1538-4365/abb82b
- Wright, A. H., Kuijken, K., Hildebrandt, H., et al. 2025, The fifth data release of the Kilo Degree Survey: Multi-epoch optical/NIR imaging covering wide and legacy-calibration fields, arXiv e-prints, arXiv:2503.19439. https://arxiv.org/abs/2503.19439
- Zackay, B., Ofek, E. O., & Gal-Yam, A. 2016, Proper Image Subtraction—Optimal Transient Detection, Photometry, and Hypothesis Testing, ApJ, 830, 27, doi: 10.3847/0004-637X/830/1/27