
Draft version April 15, 2025
Typeset using LATEX twocolumn style in AASTeX7

The LSST Science Pipelines Software: Optical Survey Pipeline Reduction and Analysis Environment

Rubin Observatory Science Pipelines Developers, James F. Bosch ,2 Yusra AlSayyad ,2 Tim Jenness ,3

Eric C. Bellm ,4 Robert H. Lupton ,2 Nate B. Lust ,2 Ian S. Sullivan ,4 Christopher Z. Waters ,2

Krzysztof Findeisen ,4 Erfan Nourbakhsh ,2 Agnès F. Ferté ,5 Arun Kannawadi ,6, 2 Eli S. Rykoff ,7

Andrés A. Plazas Malagón ,5, 7 K. Simon Krughoff ,3, ∗ John K. Parejko,4 Lee S. Kelvin 2

And Clare Saunders 2

The Rubin Observatory Science Pipelines Team

1

2Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
3Vera C. Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA

4University of Washington, Dept. of Astronomy, Box 351580, Seattle, WA 98195, USA
5SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA

6Department of Physics, Duke University, Durham, NC 27708, USA
7Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA

94025, USA

ABSTRACT
The NSF-DOE Vera C. Rubin Observatory will produce the Legacy Survey of Space and Time

(LSST), producing 11 data releases over the ten-year survey. The LSST Science Pipelines Software,
the Optical Survey Pipeline Reduction and Analysis Environment (OSPRAE), will be used to create
these data releases and to perform the nightly alert production. This paper provides an overview of
the LSST Science Pipelines Software, describing the components and how they are combined to form
pipelines.

Keywords: Astrophysics - Instrumentation and Methods for Astrophysics — methods: data analysis
— methods: miscellaneous

1. INTRODUCTION
The NSF-DOE Vera C. Rubin Observatory will be

performing the 10-year Legacy Survey of Space and
Time (LSST; Ž. Ivezić et al. 2019) starting in 2025. Ru-
bin Observatory is located on Cerro Pachon in Chile and
consists of the 8.4 m Simonyi Survey Telescope (S. J.
Thomas et al. 2022) with the 3.2-gigapixel LSSTCam
survey camera (A. Roodman et al. 2024) performing
the main survey and the Rubin Auxiliary Telescope (P.
Ingraham et al. 2020) providing supplementary atmo-
spheric calibration data. The Data Management System
(DMS; W. O’Mullane et al. 2022) is designed to handle
the flow of data from the telescope, approaching 20 TB
per night, in order to issue alerts and to prepare annual
data releases. A central component of the DMS is the
LSST Science Pipelines software that provides the al-

∗ Author is deceased

gorithms and frameworks required to process the data
from the LSST and generate the coadds, difference im-
ages, and catalogs to the user community for scientific
analysis.

The LSST Science Pipelines software consists of the
building blocks and pipeline infrastructure required to
construct high performance pipelines to process the data
from LSST. It has been under development since at least
2004 (T. Axelrod et al. 2004) and has evolved signifi-
cantly over the years as the project transitioned from
prototyping (T. Axelrod et al. 2010) and entered into
formal construction (M. Jurić et al. 2017). The soft-
ware is designed to be usable by other optical telescopes
and this has been demonstrated with Hyper Suprime
Cam on the Subaru Telescope in Hawaii (J. Bosch et al.
2018) and also with data from the Dark Energy Cam-
era (DECam), the VISTA infrared camera (VIRCAM),
the Wide Field Survey Telescope (WFST; M. Cai et al.

http://orcid.org/0000-0003-2759-5764
http://orcid.org/0009-0008-9216-7516
http://orcid.org/0000-0001-5982-167X
http://orcid.org/0000-0001-8018-5348
http://orcid.org/0000-0003-1666-0962
http://orcid.org/0000-0002-4122-9384
http://orcid.org/0000-0001-8708-251X
http://orcid.org/0000-0003-1989-4879
http://orcid.org/0000-0003-1898-5760
http://orcid.org/0000-0003-3827-4691
http://orcid.org/0000-0003-3065-9941
http://orcid.org/0000-0001-8783-6529
http://orcid.org/0000-0001-9376-3135
http://orcid.org/0000-0002-2598-0514
http://orcid.org/0000-0002-4410-7868
http://orcid.org/0000-0001-9395-4759
http://orcid.org/0000-0002-4094-2102

2 Rubin Observatory Data Management Pipeline Developers

2025), and the Gravitational-wave Optical Transient
Observer (GOTO; J. R. Mullaney et al. 2021).

In this paper we provide an overview of the compo-
nents of the software system. This includes a description
of the support libraries and data access abstraction, the
pipeline task system, and an overview of the algorith-
mic components. We do not include details of the sci-
ence validation of the individual algorithms. The other
components of the LSST DMS, such as the workflow
system (M. Gower et al. 2022; E. Karavakis et al. 2024),
the Qserv database (D. L. Wang et al. 2011; F. Mueller
et al. 2023) and the Rubin Science Platform (M. Jurić
et al. 2019; W. O’Mullane et al. 2024), are not covered
in this paper.

2. FUNDAMENTALS
The LSST Science Pipelines software is written in

Python with C++ used for high-performance algorithms
and for core classes that are usable in both languages.
We use Python 3 (having ported from python 2, T.
Jenness 2020, currently with a minimum version of
Python 3.12), and the C++ layer can use C++17 fea-
tures with pybind11 being used to provide the inter-
face from Python to C++. Additionally, the C++ layer
uses ndarray to allow seamless passing of C++ arrays
to and from Python numpy arrays. This compatibility
with numpy is important in that it makes LSST data
structures available to standard Python libraries such
as Scipy and Astropy (T. Jenness et al. 2016; Astropy
Collaboration et al. 2018).

Although all the software uses the lsst namespace,
the code base is split into individual Python products in
the LSST GitHub organization8 that can be installed in-
dependently and which declare their own dependencies.
These dependencies are managed using the “Extended
Unix Product System” (EUPS; N. Padmanabhan et al.
2015; T. Jenness et al. 2018) where most of the products
are built using the SCons system (S. Knight 2005) with
LSST-specific extensions provided in the sconsUtils
package enforcing standard build rules and creating the
necessary Python package metadata files.

For logging we always use standard Python logging
with an additional VERBOSE log level between INFO and
DEBUG to provide additional non-debugging detail that
can be enabled during batch processing. This verbose
logging is used for periodic logging where long-lived
analysis tasks are required to issue a log message ev-
ery 10 minutes to indicate to the batch system that
they are still alive and actively performing work. For
logging from C++ we use Log4CXX wrapped in the

8 https://github.com/lsst

2014 2016 2018 2020 2022 2024
0

100000

200000

300000

400000

500000
py code
py comment
C++ code
C++ comment

Figure 1. The number of lines of code comprising the LSST
Science Pipelines software as a function of year. Line counts
include comments but not blank lines. Python interfaces are
implemented using pybind11 and that is counted as C++
code. For the purposes of this count Science pipelines soft-
ware is defined as the lsst_distrib metapackage and does
not include code from third party packages.

lsst.log package to make it look more like standard
Python logging, whilst also supporting deferred string
formatting such that log messages are only formed if
the log message level is sufficient for the message to
be logged. These C++ log messages are forwarded to
Python rather than being issued from an independent
logging stream. Finally, we also provide some LSST-
specific exceptions that can be thrown from C++ code
and caught in Python.

As of April 2025, the Science Pipelines software is ap-
proximately 700,000 lines of Python and 225,000 lines
of C++. The number of lines in the pipelines code as a
function of time is given in Fig. 1.

2.1. Python environment
An important aspect of running a large data process-

ing campaign is to ensure that the software environment
is well defined. We define a base python environment us-
ing conda-forge via a meta package named rubin-env9.
This specifies all the software needed to build and run
the science pipelines software. A Docker container is
built for each software release and the fully-specified ver-
sions of all software are recorded to ensure repeatability.

2.2. Unit Testing and Code Coverage
Unit testing and code coverage are critical components

of code quality (T. Jenness et al. 2018). Every pack-
age comes with unit tests written using the standard
unittest module. We run the tests using pytest (H.
Krekel 2017) and this comes with many advantages in

9 https://github.com/conda-forge/rubinenv-feedstock

https://github.com/lsst
https://github.com/conda-forge/rubinenv-feedstock

The LSST Science Pipelines 3

Table 1. Common dimensions present in the default
dimension universe.

Name Description

instrument Instrument.
band Waveband of interest.
physical_filter Filter used for the exposure.
day_obs The observing day.
group Group identifier.
exposure Individual exposure.
visit Collection of 1 or 2 exposures.
tract Tesselation of the sky.
patch Patch within a tract.

that all the tests run in the same process and requir-
ing global parameters to be well understood, tests can
be run in parallel in multiple processes, plugins can be
enabled to extend testing and record test coverage, and
a test report can be created giving details of run times
and test failures. Coding standards compliance with
PEP 8 (G. van Rossum 2013) is enforced using GitHub
Actions, the ruff package, and pre-commit checks. A
Jenkins system provides the team with continuous inte-
gration facilities that includes running longer tests with
pre-cursor datasets.

3. DATA ACCESS ABSTRACTION
3.1. Butler

Early in the development of the LSST Science
Pipelines software it was decided that the algorithmic
code should be written without knowing where files
came from, what format they were written in, where the
outputs are going to be written or how they are going to
be stored. All that the algorithmic code needs to know
is the relevant data model and the Python type. To
meet these requirements we developed a library called
the Data Butler (see e.g., T. Jenness et al. 2022; N. B.
Lust et al. 2023).

The Butler internally is implemented as a registry, a
database keeping track of datasets, and a datastore, a
storage system that can map a Butler dataset to a spe-
cific collection of bytes. A datastore is usually a file
store (including POSIX file system, S3 object stores, or
WebDAV) but it is also possible to store metrics directly
into the Sasquatch metrics service (A. Fausti 2023; A.
Fausti Neto et al. 2024).

A core concept of the Butler is that every dataset
must be given what we call a “data coordinate.” The

data coordinate locates the dataset in the dimensional
space where dimensions are defined in terms that scien-
tists understand. Some commonly used dimensions are
listed in Table 1. Each dataset is uniquely located by
specifying its dataset type, its run collection, and its co-
ordinates, with Butler refusing to accept another dataset
that matches all three of those values. The dataset type
defines the relevant dimensions (such as whether this is
referring to observations or a sky map) and the asso-
ciated Python type representing the dataset. The run
collection can be thought of as a folder grouping datasets
created by the same batch operation, but does not have
to be a folder within a file system.

As a concrete example, the file from one detector of
an LSSTCam observation taken sometime in 2025 could
have a data coordinate of instrument="LSSTCam",
detector=42, exposure=2025080300100 and be
associated with a raw dataset type. The exposure
record itself implies other information such as the
physical filter and the time of observation. A deep
coadd on a patch of sky would not have exposure
dimensions at all and would instead be something
like instrument="LSSTCam", tract=105, patch=2,
band="r", skymap="something", which would tell
you exactly where it is located in the sky and in what
waveband since you can calculate it from the tract,
patch, band and skymap.

3.2. Instrument Abstractions: Obs Packages
The Butler and pipeline construction code know noth-

ing about the specifics of a particular instrument. In the
default dimension universe there is an instrument di-
mension that includes a field containing the full name
of a Python Instrument class. This class, which uses a
standard interface, is used by the system to isolate the
instrument-specific from the pipeline-generic. Some of
the responsibilities are:

• Register instrument-specific dimensions such as
detector, physical_filter and the default
visit_system.

• Define the default raw dataset type and the asso-
ciated dimensions.

• Provide configuration defaults for pipeline task
code that is processing data from this instrument.

• Provide a “formatter” class that knows how to
read raw data.

• Define the default curated calibrations known to
this instrument.

4 Rubin Observatory Data Management Pipeline Developers

By convention we define the instrument class and as-
sociated configuration in obs packages. As an extension
to the base definition of an “instrument“, the LSST Sci-
ence Pipelines define a modified Instrument class that
includes focal plane distortions using the afw package
(see §4.3). There are currently project-supported obs
packages for:

• LSSTCam (A. Roodman et al. 2024; T. Lange
et al. 2024; Y. Utsumi et al. 2024; S. M. Kahn
et al. 2010), LATISS (P. Ingraham et al. 2020),
and associated Rubin Observatory test stands and
simulators.

• Hyper-SuprimeCam (S. Miyazaki et al. 2018).

• The Dark Energy Camera (B. Flaugher et al. 2015;
D. L. DePoy et al. 2008).

• CFHT’s MegaPrime (O. Boulade et al. 2003).

Additionally, teams outside the project have devel-
oped obs packages to support Subaru’s Prime Focus
Spectrograph (S.-Y. Wang et al. 2020), VISTA’s VIR-
CAM (W. Sutherland et al. 2015), the Wide Field Sur-
vey Telescope (WFST; M. Cai et al. 2025), and the
Gravitational-wave Optical Transient Observer (GOTO;
J. R. Mullaney et al. 2021).

3.3. Metadata Translation
Every instrument uses different metadata standards

but the Butler data model and pipelines require some
form of standardization to determine values such as
the coordinates of an observation, the observation type,
or the time of observation. To perform that stan-
dard extraction of metadata each supported instru-
ment must provide a metadata translator class using
the astro_metadata_translator infrastructure.10 The
translator classes can understand evolving data mod-
els and allow the standardized metadata to be ex-
tracted for the lifetime of an instrument even if headers
changed. Furthermore, in addition to providing stan-
dardized metadata the package can also provide pro-
grammatic or per-exposure corrections to data headers
prior to calculating the translated metadata. This al-
lows files that were written with incorrect headers to be
recovered during file ingestion.

4. CORE INFRASTRUCTURE LIBRARIES
4.1. Region Handling

The sphgeom package is used for spherical geometry
calculations, sky-based region defintions, and sky pix-

10 https://astro-metadata-translator.lsst.io

elization schemes. The geom package is used to locations
and extents within a Cartesian coordinate space.

(Aside: I only just realized that lsst.geom has Sphere-
Point that is effectively LonLat from sphgeom and we
have both lsst.geom.Angle and lsst.sphgeom.Angle... I
feel like if I document this, that questions will be
asked...)

For coordinates, we use ICRS everywhere and leave
any required coordinate transformations to the Astropy
infrastructure.

4.2. Time and Hierarchical Data Structures
The daf_base package provides core data structures

for handling time and hierarchical data structures. The
DateTime package is used in our C++ data models
mostly to represent TAI times. For general manipu-
lations of times in Python we now use astropy.time,
following the recommendations from T. Jenness et al.
(2016).

The PropertySet and PropertyList classes tallow
dict-like data structures to be passed from Python
to C++ and back again. The PropertySet repre-
sents a hierarchical key/value data structure whereas
PropertyList is a flat data structure that is used to
represent a FITS header and supports multi-valued keys
and key comments.

4.3. Application Framework
afw – this is called the “Application Framework” in

T. Axelrod et al. (2010)11

• Image/MaskedImage/Exposure

• Table and Catalogs.

• Detection

• Math

• Camera geometry

• FITS I/O

• WCS: AST library (D. S. Berry et al. 2016) backs
the world coordinate system handling.

4.4. Co-add Utilities
coadd_utils ?

11 This document can be downloaded from https://ls.st/
Document-9349

https://astro-metadata-translator.lsst.io
https://ls.st/Document-9349
https://ls.st/Document-9349

The LSST Science Pipelines 5

5. INSTRUMENT SIGNATURE REMOVAL
Raw images from charge-coupled devices (CCDs) con-

tain instrumental effects, such as dark currents, clock-
ing artifacts, or crosstalk between neighboring ampli-
fiers, that can be removed in the data processing. In the
Rubin pipeline, this step is called Instrument Signature
Removal (ISR) and is the first processing applied to a
raw CCD exposure. The package performing the ISR
on an exposure, called ip_isr, is detailed below in Sec.
5.1: it is a critical package for Data Release Pipeline
(DRP) used to process LSST images and requires cali-
bration products produced and verified by cp_pipe and
cp_verify respectively as described in Sec. 12.5.1. For
further information about the life cycle of a calibration
product and the procedures it entails, see C. Waters
(2025). In Sec. 5.2, we specifically describe the cor-
rection of amplifier offset in more detail. A general
overview of the ISR steps (based on the model in Fig. 2)
and calibration products production (including genera-
tion, verification, certification, approval, and distribu-
tion) is given in A. A. Plazas Malagón et al. (2024).

We note that we focus here on our approach to per-
forming ISR on data from LSST cameras only (LSST-
Cam, ComCam, and LATISS), although we also provide
calibration pipelines for other cameras such as DECam
and HSC (using a different ISR approach).

5.1. ISR package
Exposures from LSST cameras are affected by instru-

mental effects, ranging from well-known CCD effects like
dark currents or bias levels to effects more recently char-
acterized like tree-rings (see H. Y. Park et al. (2017);
H. Park et al. (2020); J. H. Esteves et al. (2023); Y.
Okura et al. (2015, 2016) for more details on tree rings in
LSSTCam and their impact on science) or the Brighter-
Fatter effect as discussed in A. Broughton et al. (2024).
Correcting for these effects requires specific calibrations,
which we refer to as calibration products. In LSST cam-
eras, calibration products typically are a combined bias,
a combined dark, a Photon Transfer Curve (PTC), a
crosstalk matrix, a list of defects, and a look-up table
of non-linearity parameters. The meaning of these cal-
ibration products and the details on the Rubin Obser-
vatory’s ISR and calibration approach can be found in
A. A. Plazas Malagón et al. (2024) and (P. Fagrelius &
E. Rykoff 2025).

The ip_isr package12 contains the codes needed to
remove instrument signatures in exposures from LSST
cameras and to produce calibration products. To in-

12 https://github.com/lsst/ip_isr

Amplifier
Segment

Serial Register

Parallel Transfer

Serial Transfer

Electronic/On-chip
gain g1 (~5 μV/e-)

Cabling

Detector Readout Board (REB) with Analog
Signal Processing Integrated Circuit

(ASPIC)

ASPIC
Pre-Amp

Dual-
Slope

Integrator

Analog-
Digital

Converter
(ADC)Gain g2 (V/V)

(adjustable;
REB temp

dependent)

Gain g3 (V/V)
(REB temp

dependent?)

Bias
Injection
(10-20k)

Crosstalk
(neighbors)

Differential
non-

linearity
(DNL)

High signal
Non-linearity Mid signal

Non-
linearity

Digital
ADU

Overall gain g (e-/ADU)

Charge
Transfer

Inefficiency
(CTI) Trap

Clock
injected
offset

(-10k to
10k ADU)

Low signal
Non-

linearity
?????

Brighter/
Fatter

Crosstalk
(Across
midline)

2D Bias
Structure +

Bias “Wave”

Dark
Current

Figure 2. Schematic of the instrument model for detector
effects in LSST cameras which isrTaskLSST is based on at
the time of publication. More details about the model can
be found in P. Fagrelius & E. Rykoff (2025) and A. A. Plazas
Malagón et al. (2024).

form our ISR approach, we first designed a model of the
instrument, displayed in Fig. 2, based on our knowl-
edge of the hardware and electronics. This model states
the order in which the different known instrumental ef-
fects happen, from a photon hitting the CCD to the out-
put ADC unit (ADU) signal. In turn, isrTaskLSST in
ip_isr sequentially applies corrections of these effects
in the opposite order as their effects occur in the model,
as we are attempting to remove the impact of those ef-
fects on the image. Such corrections are typically done
by calling other Tasks (e.g. overscan, crosstalk, etc.)
also implemented in ip_isr.

Overall, isrTaskLSST takes a raw CCD exposure, and
calibration products if available, and outputs a Struct
containing the output exposure, the postISRCCD out-
put exposure as well as its binned version for easier dis-
play, the exposure without interpolation and statistics
on the output exposure. IsrTaskLSSTConfig defines
the configurations used in this Task, they are set by de-
fault to their expected value to perform ISR on a typical
LSSTCam exposure. Configuration parameters starting
with do will typically correspond to an ISR step, they
are turned on or off in the pipelines when producing
the different calibration products. We have also devel-
oped isrMockLSST which simulates a raw exposure and
corresponding calibration products and is used to test
isrTaskLSST.

5.2. Amplifier Offset Correction
The amplifier offset correction (commonly referred

to as amp-offset correction, or pattern continuity cor-
rection) runs as part of the instrument signature re-
moval (ISR) process. This correction is designed to ad-
dress systematic discontinuities in background sky lev-

https://github.com/lsst/ip_isr

6 Rubin Observatory Data Management Pipeline Developers

els across amplifier boundaries. We believe that these
discontinuities arise from electronic biases between ad-
jacent amplifiers, persisting even after the application of
dark and flat corrections.

Drawing on the PANSTARRS’ Pattern Continuity al-
gorithm (C. Z. Waters et al. 2020), our method aims
to eliminate these offsets, thereby preventing problems
such as background over-/under-subtraction at amplifier
boundaries caused by discontinuities across the detector.

The amp-offset algorithm initially computes a robust
flux difference measure between two narrow strips on
opposite sides of each amplifier-amplifier interface. Re-
gions containing detected sources, or pixel data which
have been masked for other reasons, are not considered.
These amp-interface differences are stored in an amp-
offset matrix; diagonal entries represent the number of
neighboring amplifiers, and off-diagonal entries encode
information about the associations between amplifiers.
A complementary interface matrix encodes directional
information for these associations. Using this informa-
tion, a least-squares minimization is performed to de-
termine the optimal pedestal value to be added or sub-
tracted to each amp which would reduce the amp-offset
between that amplifier and all of its neighboring am-
plifiers. This method is generalized to support 2D am-
plifier geometries within a detector, as with LSSTCam,
incorporating length-based weighting into the matrices
to account for amplifiers that are not square.

6. DETECTION AND MEASUREMENT
We perform detection and measurement on images

with the meas framework. We distinguish between de-
tection and measurement:

• detection: identifying Footprints (TODO: add afw
link!) of sources as being above a given flux or
signal-to-noise level (see 6.2.1).

• measurement: running plugins on each source in
the image to compute properties of that source
(e.g. a centroid or aperture flux) (see below).

We also distinguish between measurement on the orig-
inal detection image (single-frame measurement) vs.
measurement on a different image from the original de-
tection (forced measurement). Measurement could be
performed on a single raw or calibrated image, a coadd of
multiple images, or a difference of images: from the per-
spective of a measurement plugin, there is no difference
between these cases. forced measurement is performed
on one image, using a ”reference” catalog of sources that
were detected on another image.

6.1. meas_base
The meas framework interface is defined in the

meas_base package. Measurement plugins have
the Plugin suffix if they are defined in python,
and the Algorithm suffix if they are defined in
C++. This package defines base classes for plug-
ins (SingleFramePlugin, ForcedPlugin in python;
SingleFrameAlgorithm, ForcedAlgorithm in C++)
and the measurement tasks that can be config-
ured to run them (SingleFrameMeasurementTask,
ForcedMeasurementTask, CatalogCalculationTask),
as well as some concrete implementations of plugins
(ApertureFluxAlgorithm, BlendednessAlgorithm,
CircularApertureFluxAlgorithm,
GaussianFluxAlgorithm,
LocalBackgroundAlgorithm,
PeakLikelihoodFluxAlgorithm,
PixelFlagsAlgorithm, PsfFluxAlgorithm,
ScaledApertureFluxAlgorithm,
SdssCentroidAlgorithm, SdssShapeAlgorithm).
Each plugin has an associated config class, suffixed
with Config in python or Control in C++ (e.g.
SdssCentroidAlgorithm has SdssCentroidControl),
used to configure parameters of that specific algorithm.

6.1.1. Measurement plugins

Plugins are added to a registry, so that they and
their outputs can be referred to by a shorter com-
mon name that identifies the package it was defined in,
for example lsst.meas.base.SdssCentroidAlgorithm
is registered as base_SdssCentroid. This way,
measurements produced by each plugin will have
consistent, distinct names in the output schema,
e.g. base_SdssCentroid_x, base_SdssCentroid_y,
base_SdssCentroid_flag.

Measurement plugins often depend on each other, and
must be run in a particular order. Rather than creat-
ing a directed acyclic graph to denote the dependen-
cies, the plugins are batched and and are run in any
order within a batch. The batch order is defined by
the getExecutionOrder method, with smaller execu-
tion numbers being run first. BasePlugin defines a list
of named constants for particular cases:

1. CENTROID_ORDER for plugins that require only
footprints and peaks

2. SHAPE_ORDER for plugins that require a centroid to
have been measured

3. FLUX_ORDER for plugins that require both a shape
and centroid to have been measured.

Measurement plugins output their results to a
SourceCatalog (TODO: crosslink to afw section!),

The LSST Science Pipelines 7

which has a slot system for predefined aliases to allow a
plugin to get a value without knowing exactly what plu-
gin originally computed that value, e.g. slot_Centroid
could point to base_SdssCentroid, or some other plu-
gin that measures centroids.

6.1.2. SingleFrameMeasurementTask

Single frame measurement requires a catalog of de-
tected source Footprints, which could still be blended,
or could have been deblended (TODO: crosslink?).
When initialized, the task creates a schema from the
configured plugins, which defines the contents of the out-
put catalog and cannot be modified after initialization.

Before performing any measurement, this task re-
places all sources with noise (via the NoiseReplacer)
in the regions defined by their detected Footprints.
The task then loops over all ”parent” sources (those
that were not deblended and those that represent the
un-deblended state of blends), and then loops over all
”children” of parents (if any). For each such source, the
source footprint is re-inserted into the image, all mea-
surement plugins are run, and the footprint is then re-
placed with noise again. Then, for blended sources, the
parent is inserted, measured (running plugins on both
the parent and jointly on all the children via measureN),
and again removed.

6.1.3. ForcedMeasurementTask

Forced measurement uses the known pixel position of
objects from a reference catalog to constrain measure-
ments on another image. Typically only photometric
measurements are scientifically useful, as the centroid
and shape are defined by the reference catalog, and
transformed to the coordinate system of the image be-
ing measured on (e.g. shifting to the appropriate x/y
origin, or transforming through the respective WCSs).
Other than this coordinate transformation, forced mea-
surement proceeds much like single frame measurement
above. Two concrete implementations of the task in-
clude ForcedPhotCcdTask for single-visit images and
ForcedPhotCoaddTask for coadd patch images, both us-
ing the output of a previous single frame measurement
run on coadds as the reference catalog.

6.2. meas_algorithms
The meas_algorithms package contains a wide va-

riety of astronomical algorithms. We briefly describe
some of them here; for the full list of Tasks defined in
this module, see the full package documentation.

• MeasureApCorrTask measures aperture correc-
tions on an image (TODO: how? Eli?).

• NormalizedCalibrationFluxTask measures
SOMETHING TODO: Eli?

• ObjectSizeStarSelectorTask is used to find
likely PSF-like sources to be used to fit a PSF
model during initial calibration.

• SkyObjectsTask generates ‘sky object’
Footprints on regions of an image that do
not have a DETECTED mask plane set (TODO: link
to afw Mask!).

• SubtractBackgroundTask fits and subtracts the
background of an image, potentially appending it
to an earlier fitted background model.

• ScienceSourceSelectorTask and
ReferenceSourceSelectorTask select sources
from a catalog given a set of configurable criteria.

This package also contains tools for defining and
converting existing third party catalogs to be used
as reference catalogs by Science Pipelines code, via
ConvertReferenceCatalogTask and its commandline
interface convertReferenceCatalog. These tools are
described in more detail in the documentation for cre-
ating an LSST reference catalog.

6.2.1. SourceDetectionTask

We detect positive and negative sources on an
image with SourceDetectionTask to produce a
SourceCatalog of Footprints. This task requires that
the image be background subtracted to produce good re-
sults. SourceDetectionTask convolves the image with
a Gaussian approximation to the exposure PSF and de-
tects peaks and footprints above a configurable thresh-
old in either signal-to-noise or absolute flux level. The
detected footprints may be significantly blended, de-
pending on the detection threshold and source density
in the input image: in order to separate footprints that
contain many peaks, some form of deblending (TODO:
section link!) must be performed.

6.2.2. DynamicDetectionTask

The DynamicDetectionTask is a specialized version
of SourceDetectionTask that adapts detection thresh-
olds based on the local background and noise. This task
was initially developed to address detection efficiency is-
sues noted in HSC data. First, DynamicDetectionTask
detects sources using a lower detection threshold than
normal. In so doing, we identify regions of the sky which
are unlikely to contain real source flux. Next, a config-
urable number of sky objects are placed in these sky re-
gions (1000 by default), and the PSF flux and standard

https://pipelines.lsst.io/v/daily/modules/lsst.meas.algorithms/index.html
https://pipelines.lsst.io/v/daily/modules/lsst.meas.algorithms/creating-a-reference-catalog.html
https://pipelines.lsst.io/v/daily/modules/lsst.meas.algorithms/creating-a-reference-catalog.html

8 Rubin Observatory Data Management Pipeline Developers

deviation for each of these measurements is calculated.
Using this information, we set the detection threshold
such that the standard deviation of the measurements
matches the median estimated error.

6.2.3. MaskStreaksTask

TODO: for Meredith or Clare?

6.3. Deblending 13

Deblending in the science pipelines is performed differ-
ently for single-band (visit) image processing vs. multi-
band (coadd) image processing. This section gives a
basic description of each algorithm.

6.3.1. Single-band Deblending

Deblending on single-band images (ie. visit) is per-
formed using the meas_deblender package and is based
on the deblender used in SDSS (citation needed), with
a few differences that will be discussed shortly. Similar
to the SDSS deblender, the LSST deblender creates a
template for each source in a blend using a very sim-
ple (yet computationally efficient) model for each peak
position in a parent Footprint. Once a template has
been created for each peak in the blend, the deblender
combines all of the source templates into a single blend
model by summing their values in each pixel. For each
pixel in a source template, the ratio of the source tem-
plate value to the total blend model is calculated and
used to weight the pixel value from the image to create
a model for each source. The source models are thus
flux conserving in that adding them together will yield
the original image except for pixels that do not appear
in any of the individual templates. A cleanup algorithm
is then run to allocate the remaining pixels to one of the
sources in the blend based on a set of criteria including
distance to the center, brighness of the nearest sources,
etc.

6.3.2. Deblender Template Generation

The main ansatz of the SDSS deblending algorithm is
that the flux from stars and galaxies in a ground based
telescope is nearly 180 degree symmetric. Figure 3 illus-
trates how a 1D slice through the center of two blended
sources can exploit this symmetry by setting the pix-
els on opposite sides of the (integer) center pixel to the
minimum value of both pixels. In other words, for sim-
ple blends of only two sources the deblender can use

13 This section assumes that a dection section has already been
written. Some changes might be necessary if there are topics
not covered in the detection section or topics that are dupli-
cated in this section.”

the flux on the non-blended side to constrain the value
of the flux on the blended side. Despite the fact that
stars (PSFs) and galaxies are not exactly symmetric, es-
pecially since their position is not exactly centered in
the center of a single pixel, this algorithm works quite
well for generating templates in simple blends that very
nearly approximate each source when redistributing flux
from the image.

For sources with low SNR the algorithm fails due to
noise in the image, generating galaxy templates that are
typically very jagged and unphysical. To combat this,
for each peak in the parent Footprint the deblender
first attempts to fit the flux from the image with a simple
PSF model that allows its position, amplitude, and a
linear background, to vary. If the fit has a reasonable
χ2 value then the deblender will use this scaled PSF
model as a template for the source. Only for sources
that cannot be adequately modeled with the PSF are
the symmetric templates used.

The main failure point of this algorithm is when three
(or more) sources lie along the same axis. For exam-
ple, Figure 4 illustrates a 1D slice through the center of
three aligned sources. In this case the minimum pixel on
each side of the central source cannot constrain the flux
at that radial location and results in a template that
has extra bumps from its neighbors. This turns out
to be more catastrophic than one might expect. No-
tice that even the neighboring sources, which have very
good templates created by using symmetry on their un-
blended side, have their resulting models contaminated
due to the central object that steals flux from both of
them. In single visits the number of ”three in a row”
blends is small enough that we sacrifice the quality of
the models for efficiency and still use the single-band
deblender. For LSST-depth coadds this becomes a sig-
nificant problem, as deep coadds can have as much as
40% of blends having 3 or more sources and a more so-
phisticated algorithm is needed.

6.3.3. Multi-band Deblending

The multi-band deblender is an implementation of the
scarlet deblending algorithm described in P. Melchior
et al. (2018). In our implementation, scarlet_lite,
we have made our own set of simplifying assumptions
that are different from the original scarlet algorithm to
make it more efficient when used in a large ground based
survey like LSST. Similar to the original scarlet we
make the assumption that astrophysical objects can be
thought of as a collection of components, where each
component has the properties

• Components have a single color (spectrum) that is
the same in all pixels over its shape (morphology)

The LSST Science Pipelines 9
Original Image

image
template 1
template 2

Source 1
truth
template
model

Source 2
truth 2
template
model

Figure 3. A 1D slice of two blended Gaussian sources il-
lustrating how symmetry can be utilized to model blended
sources.

Original Image
image
template 1
template 2
template 3

Source 1
truth
template
model

Source 2
truth 2
template
model

Source 3
truth 3
template
model

Figure 4. A 1D slice through three aligned Gaussian
sources, demonstrating a failure case of relying on symmetry
for generating deblender templates. Notice that for sources
2 and 3 the templates are reasonable but due to the inability
of source 1 to use symmetry to constrain flux in the blended
region, the resulting models for all three sources are poor.
This catastrophic ”three in a row” problem was part of the
motivation for creating scarlet to incorporate spectral infor-
mation and a more rigorous iterative deblending algorithm.

• Components have flux that monotonically de-
creases from the center

• Component flux is additive

The classic example is decomposing a single galaxy
into bulge and disk components, where both the bulge

and disk share a common center but have different spec-
tra and morphologies. Something more complex, like
a grand design spiral, could in theory be modeled as a
source with multiple components, where spiral arms and
star forming regions could still be thought of as sepa-
rate monotonic components. For the science pipelines
we ignore those more complicated structures, as detec-
tion typically already shreds large galaxies into multiple
sources. Instead we use a signal to noise cut where low
flux sources are modeled with a single component and
higher flux sources are modeled with two components.

Scarlet lite initializes models with nearly the same
templates as those generated by the single-band de-
blender. Using a χ2-like monochromatic image created
by weighting each band by its inverse variance, scar-
let lite creates initial morphology models that are sym-
metric from the center in the monochromatic image,
with the additional constraint that the flux is mono-
tonically decreasing from the center. In order to sat-
isfy the constraint that all pixels in the morphology
have the same spectrum, scarlet models exist in a par-
tially deconvolved frame with the seeing of a well sam-
pled but narrow Gaussian. The initial spectrum of each
source is determined using a least squares fit of each
monochromatic morphology, convolved with the differ-
ence kernel in each band to match the image, for each
component. It then uses proximal-ADAM (PADAM,
P. Melchior et al. 2019) to iteratively update the spec-
trum and morphology with the given constraints un-
til convergence or a maximum number of iterations is
reached. It should be noted that although we do use
symmetry to initialize the scarlet models, we do not
implement a symmetry constraint and the final mod-
els are not guaranteed to be symmetric. The models are
stored as the deepCoadd_scarletModelData data prod-
uct, which contains all of the blends for a single patch.
Like the single-band deblender, the scarlet_lite mod-
els are only used as templates to redistribute flux from
the image and all measurements are performed on the
flux redistributed models.

6.4. meas_extensions_convolved
6.5. meas_extensions_gaap

meas_extensions_gaap implements the Gaussian
Aperture and PSF photometry (GAaP) algorithm (K.
Kuijken 2008). It is an aperture photometry algorithm
designed to obtain consistent colors of extended objects
(i.e., galaxies). This is done by weighting each (pre-
seeing) region of a galaxy by the same pre-defined 2D
Gaussian function in all the bands and is thus largely in-
sensitive to the seeing conditions in the different bands.
In practice, this is done by first convolving each object

10 Rubin Observatory Data Management Pipeline Developers

by a kernel (using the same tools described in Sec. 7)
so that the PSF is Gaussian and is larger by about 15%
(this is configurable). As a second step, each Gaussian-
ized object is then weighted with a Gaussian aperture
so that the effective pre-seeing Gaussian aperture is the
same for all objects in all the bands. The plugin is con-
figured to use a series of circular Gaussian apertures, an
elliptical Gaussian aperture (optionally) that matches
the shape of the object in the reference band.

Although the two-step approach is motivated by the
original implementation in K. Kuijken (2008), the im-
plementation of this algorithm within the broader con-
text of the measurement framework makes it different
from the implementation used in the Kilo-Degree Survey
(KiDS; A. H. Wright et al. 2025). In particular, because
neighboring objects are replaced with noise before mea-
surement, Gaussianization of the PSF does not result
in increased blending as mentioned in Appendix A2 of
K. Kuijken et al. (2015). Furthermore, the uncertainty
handling is different. Correlations in noise introduced
due to PSF-Gaussianization is included in the uncer-
tainty estimates. However, because only per-pixel noise
variance is tracked, the noise treatment is forced to as-
sume that the noise is uncorrelated to begin with which
is not true on the coadds. See A. Kannawadi (2022) for
more details on the implementation details.

Note that this measurements from this plugin do not
produce total fluxes, but should only be used to obtain
colors. For total fluxes, measurements from cModel or
MultiProFit (c.f. Sec. 6.12) are recommended.

6.6. meas_extensions_photometryKron
6.7. PSF Modeling

Within the pipeline, three distinct PSF models are
defined: pcaPsf, PSFex, and Piff. Only PSFex
and Piff are currently used. PSFex is a fast, and
less accurate PSF estimation and is wrapped within
meas_extensions_psfex. In contrast, Piff is a
slightly slower, but more accurate PSF estimation
that is incorporated in meas_extensions_piff. Both
meas_extensions_psfex and meas_extensions_piff
are described below.

6.7.1. meas_extensions_psfex

The meas_extensions_psfex package provides an in-
terface to a patched version of the PSFEx tool (E.
Bertin 2011) for modeling spatially varying point spread
functions (PSFs). It uses PSF candidates typically se-
lected from detected sources using a configurable star
selector that selects clean, isolated stars. At its core
is PsfexPsfDeterminerTask, which prepares these se-
lected stars for input into PSFEx, runs the external bi-

nary, and converts the output into an LSST-specific PSF
object (PsfexPsf). Key parameters such as spatial in-
terpolation order and oversampling ratio are controlled
via PsfexPsfDeterminerConfig.

For each CCD in the focal plane, PSFEx indepen-
dently models the PSF as a linear combination of basis
vectors and captures spatial variation using polynomial
interpolation. PsfexStarSelectorTask offers a built-in
mechanism for star selection using strict cuts on signal-
to-noise ratio, FWHM range, ellipticity, and quality
flags. The package raises specific exceptions for com-
mon failure modes: when no stars are available, when
none pass quality cuts, or when too few good stars re-
main to support the required model complexity–as de-
termined by the degrees of freedom needed for the fit.
In the latter case, the insufficient sample size forces the
PSFEx model to reduce its polynomial degree to an un-
supported level. The code also includes hooks for visual
debugging (via afwDisplay and optional matplotlib
plots), enabling visual inspection of PSF candidates and
rejection reasons during development or QA.

meas_extensions_psfex is used in contexts where
PSFEx compatibility is required or when modeling
speed is preferred over robustness. Another exter-
nal PSF modeler (discussed in Section 6.7.2) provides
greater robustness but is slower in comparison.

6.7.2. meas_extensions_piff

The meas_extensions_piff package is a wrapper
around the PSF package Piff used to estimate and
compute the PSF (M. Jarvis et al. 2021a,b). Piff is
a modular package that supports various PSF models,
interpolation schemes, coordinate systems, and can op-
erate on a per-CCD basis or over the full field of view,
as indicated by its name. The implementation within
meas_extensions_piff does not exploit the full mod-
ularity of Piff; instead, it closely follows the method
used for cosmic shear analysis like in DES (M. Jarvis
et al. 2021b; T. Schutt et al. 2025).

The PSF model utilized is a PixelGrid, and the inter-
polation is performed using BasisPolynomial interpo-
lation (M. Jarvis et al. 2021b). Modeling is executed per
CCD and can employ either pixel or sky coordinates. A
key difference from PSFex is that Piff implements out-
lier rejection based on chi-squared criteria (see M. Jarvis
et al. 2021b, for more details).

Most of the configuration described here is adjustable
through the PiffPsfDeterminerConfig that are expos-
ing some of the configurable parameters of Piff and can
be fine-tuned for a dedicated survey. However, some
important features that were implemented by M. Jarvis
et al. (2021b) and T. Schutt et al. (2025) have not yet

The LSST Science Pipelines 11

been enabled but will be available in the near future.
While M. Jarvis et al. (2021b) operates in sky coordi-
nates with a WCS that includes CCD distortions such as
treerings, meas_extensions_piff can work in sky co-
ordinates and incorporate WCS; as written, it does not,
however, account for CCD distortions like tree rings.
Additionally, although T. Schutt et al. (2025) incorpo-
rated a color correction to account for chromatic effects
on the PSF, this correction has not yet been imple-
mented in meas_extensions_piff.

6.8. meas_extensions_shapeHSM
The meas_extensions_shapeHSM package contains

the plugins to measure the shapes of objects. The plug-
ins measure the moments of the sources and PSFs with
adaptive Gaussian weights. The algorithm was initially
described in C. Hirata & U. Seljak (2003) and was mod-
ified later in R. Mandelbaum et al. (2005). The im-
plementation of these algorithms lives within the hsm
module of the GalSim package (B. T. P. Rowe et al.
2015). meas_extensions_shapeHSM now interacts di-
rectly with the Python layer of GalSim to make the
measurements.

The base plugin for measuring moments
is the HsmMomentsPlugin and is the par-
ent class of the HsmSourceMomentsPlugin and
HsmPsfMomentsPlugin which are specialized to
measure on the sources (and objects) and PSFs
respectively. HsmSourceMomentsRoundPlugin is a
further specialized plugin that measures the mo-
ments with circular Gaussian weights instead of the
elliptical ones in HsmSourceMomentsPlugin. The
HsmPsfMomentsDebiasedPlugin adds noise to the PSF
image to degrade it to have the same signal-to-noise
ratio (SNR) as the source image. This makes the
ellipticity calculated from this plugin have the same
bias as the source ellipticity The PSF moments from
this plugin should be used when calculating ellipticity
residuals so the bias is largely cancelled. Having the
various specializations as distinct plugins allows an
object to be measured under different configurations
simultaneously and included in the output catalogs.

In addition to the plugins that measure (adap-
tive) weighted moments, there are also a series of
HsmShape plugins to estimate the PSF-corrected ellip-
ticities of objects. In particular, the outputs from
HsmShapeRegaussPlugin have been used to measure
weak gravitation lensing signals in the Hyper Suprime-
Cam SSP data (R. Mandelbaum et al. 2018; X. Li et al.
2022).

6.9. meas_extensions_simpleShape
6.10. meas_extensions_trailedSources

6.11. meas_modelfit
6.12. meas_extensions_multiprofit

MultiProFit is a package for Gaussian mixture model
fitting (D. S. Taranu 2025). MultiProFit is primar-
ily used to provide multiband Sersic model fits to ob-
jects using all available coadds. The multiprofit
package is a standalone Python-only package that pro-
vides the interfaces for astronomical object fitting.
multiprofit depends primarily on gauss2d_fit, a
standalone C++ package with Python bindings for
fast evaluation of Gaussian mixture model likelihoods
and gradients thereof. gauss2d_fit in turn is an ex-
tension of gauss2d, providing additional classes for
parameters with arbitrary limits and transformations
from the modelfit_parameters header-only C++ li-
brary. All of these packages are included in the sci-
ence pipelines but can also be installed independently,
as multiprofit only depends on other standalone pack-
ages like pex_config.

The meas_extensions_multiprofit package con-
tains pipeline tasks (with interfaces defined in
pipe_tasks) necessary to run multiprofit on coad-
ded and deblended images. The first of these tasks fits
a Gaussian mixture model to the PSF model image at
the location of each object in a patch. This procedure
is similar to the shapelet PSF fitting functionality in
meas_modelfit. The main differences are that the com-
ponents are pure Gaussians (shapelet parameters are not
supported), can have independent shapes, and are con-
strained to have integrals summing to unity (i.e. they
are normalized). Currently, only a maximum of two
components are supported; this limitation may be re-
moved in the future.

The remainder of the tasks in
meas_extensions_multiprofit use the Gaussian
mixture PSF model to fit a PSF-convolved model to
all objects in a given patch, for all available bands.
Convenient tasks are available for a variety of models,
including a single Sersic, as well as multi-component
bulge-disk models with an optional central point source
component. In all cases, the structural parameters
for each component are band-independent, with a
separate total flux parameter for each band. That
is, individual components do not have intrinsic color
gradients (although the convolved models might, if the
PSF parameters vary by band).

12 Rubin Observatory Data Management Pipeline Developers

6.13. Reliability Scoring
The meas_transiNet package determines a numerical

score for input cutout images using pre-trained machine-
learning models. Image differencing may produce false
detections, so time-domain surveys chacteristically use
machine learning classifiers to distinguish astrophysical
sources from artifacts (“Real/Bogus;” e.g., J. S. Bloom
et al. 2012; D. A. Goldstein et al. 2015; D. A. Duev et al.
2019).

The meas_transiNet defines “model packages” that
consist of a python architecture class, a PyTorch (A.
Paszke et al. 2019) weights file, and associated metadata.
The inference task may be configured to load a model
package from disk or from the Butler.

The RBTransiNetTask PipelineTask takes as input
three square cutouts of configurable size from the sci-
ence, template, and difference images centered on the
location of a source. These images are concatenated,
batched into Torch blobs, and passed to the model for in-
ference. Either CPU or GPU backends may be used for
inference. The output of the task is a single float rang-
ing from 0–1 for each cutout triplet, with higher values
indicating that the DIASource is more likely to be as-
trophysical. These reliability scores are then joined with
the DIASource catalogs by a later transformation task.
Detailed discussion of the model architecture, training,
and performance will be presented in T. Acero Cuellar
et. al (in prep.).

7. DIFFERENCE IMAGING
Difference imaging is implemented in ip_diffim, and

is divided into three steps. First, a base template image
is constructed with getTemplate by warping previously-
generated coadded images to the WCS and bounding
box of the science image. Then the warped template
is subtracted from the science image using one of sev-
eral available algorithms in subtractImages, which pro-
duces a temporary difference image. Finally, peaks are
detected on the difference image and DiaSources are
measured in detectAndMeasure. The final difference
image with updated mask planes is written along with
the DiaSource catalog.

7.1. subtractImages
The primary implementation of image subtraction

used by subtractImages is based on C. Alard & R. H.
Lupton (1998), and uses spatially-varying Gaussian ba-
sis functions for the fit. The PSF-matching kernel can
be constructed for either the science or the template im-
age, and the resulting difference image is decorrelated
D. J. Reiss & R. H. Lupton (2016). Optionally, the sci-
ence image can be preconvolved with its own PSF before

PSF-matching, producing a Score image analogous to B.
Zackay et al. (2016).

7.2. detectAndMeasure
Positive and negative peaks are detected by threshold-

ing the Score image if it is available. Otherwise, the dif-
ference image is smoothed with a Gaussian of the same
width as the PSF of the science image, and thresholds
are taken on the smoothed image. Contiguous pixels
around each peak that are statistically brighter than
the background are grouped into source footprints, and
any overlapping footprints are merged. Footprints that
contain both a positive and a negative peak are fit as
dipoles. The dipole fit simultaneously solves for the neg-
ative and positive lobe centroids and fluxes using non-
linear least squares minimization. DiaSources that are
not classified as dipoles instead fall back on an SDSS-
style centroid (J. R. Pier et al. 2003). Finally, all config-
ured measurement plugins are run, including HSM shape
measurements (C. Hirata & U. Seljak 2003; R. Mandel-
baum et al. 2005) and trailed source measurements.

8. ASTROMETRIC AND PHOTOMETRIC
CALIBRATION

8.1. Astrometric Calibration
Astrometric calibration is performed in two steps.

First, an astrometric fit is done for single frames, which
produces an astrometric solution sufficient for Alert Pro-
duction and difference imaging. A final astrometric solu-
tion is then fit using the ensemble of images from a given
band overlapping with a given tract. This final astro-
metric solution is then used for all downstream tasks. A
full description of astrometric calibration in the pipeline
is given in C. Saunders (2024).

8.2. meas_astrom
Single frame astrometric fits are performed by

AstrometryTask in meas_astrom and run in
CalibrateImage (TODO: crosslink?). This task
matches a catalog of sources detected and measured
on an image to a reference catalog and solves for
the World Coordinate System (WCS) of the image.
Matching and WCS fitting are performed iteratively,
to reject astrometric outliers. The matcher is either
the optimistic (MatchOptimisticBTask) or pessimistic
(MatchPessimisticBTask) matcher from V. Tabur
(2007), with the pessimistic matcher used by default
due to better performance on dense fields; see (C. B.
Morrison 2018) for details. The WCS fitter can be
a simple affine model on top of the known camera
geometry (TODO: link to afw cameraGeom section!),
as in FitAffineWcsTask, or a FITS TAN-SIP WCS

The LSST Science Pipelines 13

(D. L. Shupe et al. 2005), as in FitTanSipWCSTask
or FitSipDistortionTask. We default to fitting the
simple affine model because we have a well fit distortion
model from running gbdes in DRP (§8.3), thus we do
not need the extra degrees of freedom provided by a
TAN-SIP model.

Because AstrometryTask only requires a single image,
it is suitable for use during Alert Production, which does
not have access to the entire focal plane. This single
frame astrometric fit is sufficient for initial calibration
and difference imaging (assuming the modeled camera
geometry is a close match to the true camera distor-
tions), but during DRP we perform a full focal plane fit
with gbdes.

8.3. gbdes
The final astrometric solution is fit by

GbdesAstrometricFitTask in drp_tasks, which
runs the wcsfit fitter from the gbdes package (G. M.
Bernstein 2022; G. M. Bernstein et al. 2017) on the
ensemble of images in a given band overlapping with
a given tract. This task fits a per-detector polynomial
distortion model, a per-exposure polynomial distortion
model, and position for all the isolated star sources in
the component images. This is done by first associating
all isolated point sources in the input images and
matching them with an external reference catalog.
The model is then fit by iterating between fitting the
per-detector and per-exposure polynomial models,
and recalculating the best-fit solution for the object
positions.

The task can be configured to fit either a two-
parameter (position on the sky) or five-parameter (posi-
tion, proper motion, and parallax) solution for the input
objects. Correcting for differential chromatic refraction
is another configurable option.

There are also options to run variants
of the main GbdesAstrometricFitTask:
GbdesAstrometricMultibandFitTask fits im-
ages from multiple bands at once, in which
case the per-detector distortion model is also
per-band; GbdesGlobalAstrometricFitTask re-
moves the restriction to a single tract and fits
images regardless of their location on the sky
by splitting the images into contiguous groups;
GbdesGlobalAstrometricMultibandFitTask com-
bines these two options.

Lastly, the per-detector polynomial model fit by the
task is also used to build a camera distortion model,
which can be fed back into single-frame modeling or
into the gbdes fit for other data. For use in single-
frame modeling, the BuildCameraFromAstrometryTask

subtask is used to build an afw Camera object out of
the native polynomial model.

8.4. Photometric Calibration
8.4.1. PhotoCal

TODO: Eli should look at this? Single frame pho-
tometric calibration is performed by PhotoCalTask, in
the pipe_tasks package. This task requires that the
input catalog come from an image with a good astro-
metric solution. The catalog to be calibrated is down-
selected to be bright (S/N > 10), well measured, PSF-
like sources which are then matched to a reference cata-
log. The matched sources have their instrumental fluxes
converted into rough magnitudes, which are are itera-
tively compared with the reference catalog magnitudes
using a sigma-clipping algorithm, to fit a single magni-
tude zero point to the whole image.

Because PhotoCalTask only requires a single image, it
is suitable for use during Alert Production, which does
not have access to the entire focal plane. This single
frame photometric fit is sufficient for initial calibration
and difference imaging (assuming the flat field calibra-
tions applied during ISR are a close match to the true
instrument response), but during DRP we perform a full
focal plane fit with gbdes.

8.5. fgcmcal
Global photometric calibration is computed by use

of the Forward Global Calibration Method (FGCM
D. L. Burke et al. 2018), as adopted for LSST Science
Pipelines (P. Fagrelius & E. Rykoff 2025). This global
calibration algorithm makes use of repeated observa-
tions of stars in all ugrizy bands, combining a forward
model of the atmospheric parameters with instrumen-
tal throughputs measured with auxiliary information.
In this way we simulateously constrain the atmospheric
model as well as standardized top-of-atmosphere (TOA)
star fluxes over a wide range of star colors, including
full chromatic corrections from the instrument and at-
mosphere.

Running fgcmcal first requires generating a look-up
table. The input to the look-up table includes the ef-
fect of a MODTRAN (A. Berk et al. 1999) atmospheric
model at the elevation of the observatory, as well as
the throughput as a function of wavelength and position
from the optics, filters, and detector quantum efficiency.
The quality of the output (in terms of repeatability of
bright isolated stars across a wide range of colors) de-
pends on the knowledge of the instrumental throughput.

The primary goal of fgcmcal is to provide a uniform
relative photometric calibration of the survey. For “ab-
solute” (relative) calibration, a reference catalog can be

14 Rubin Observatory Data Management Pipeline Developers

used as an additional constraint on the fit. Thus, the
overall throughput output by fgcmcal depends on the
reference catalog. This can be checked with (e.g.) spe-
cific white dwarfs or CALSPEC (R. C. Bohlin 2007)
stars in the survey. However, the relative spatial and
chromatic calibration of the fgcmcal calibration means
that the absolute calibration reduces to a set of 6 num-
bers (one for each band, or one overall throughput and
5 absolute colors).

8.6. jointcal
jointcal fits both astrometry and photometry across

multiple exposures of large mosaic cameras, fitting for
both the true star positions/fluxes, and the distortions
caused by the telescope and instrument. jointcal
is no longer used used by the LSST camera pipeline,
but is available for use by cameras that are not sup-
ported by gbdes and/or fgcmcal (for example, DE-
Cam). More details on the jointcal algorithm are
available in (J. P. U. of Washington) & P. A. L. Paris)
2018).

9. SOURCE ASSOCIATION
The ap_association package contains multiple tasks

for standardizing newly detected DiaSources and associ-
ating them with existing or new DiaObjects. Standard-
ization converts the output catalogs from 7 to the format
specified in sdm_schemas (Sec. 13), and applies filter-
ing consistent with (W. O’Mullane et al. 2024). Once
DiaSource catalogs are standardized, they are associ-
ated to DiaObjects in either of two modes: Data Release
Production (DRP) or Alert Production (AP). Both im-
plementations use the Pessimistic Pattern Matcher B
(C. B. Morrison 2018) to score and match DiaSources,
but differ in how DiaObjects are stored and how visits
are ordered.

• DRP association loads all DiaSource catalogs from
a set time period overlapping a single patch at
once, and creates new DiaObjects for matched Di-
aSources from all visits simultaneously.

• AP association processes a single visit at a time,
and creates new DiaObjects incrementally from
unassociated DiaSources. DiaObjects and their
associated DiaSources are stored in the Alert Pro-
duction Database (APDB) (Sec. 9.2).

After association, an additional filtering step may be
applied to DiaSources with no matched DiaObject of
Solar System object (Sec 9.1). Properties of the source
such as its reliability score (Sec. 6.13, source flags, or
signal-to-noise cuts may be used to drop detections that

are likely to be false detections and avoid creating erro-
neous new DiaObjects.

9.1. Solar System object association
Ephemerides from known Solar System objects are

preloaded with approximate locations for the expected
time of observation in mpSkyEphemerisQuery. Since
these are loaded in Prompt Processing before the science
image arrives and is calibrated, the orbital fit parame-
ters are used in association to correct the position to the
midpoint of the observation, including the shutter mo-
tion profile since the shutter takes a second to cross the
focal plane. Solar System objects are associated to Di-
aSources using the closest match within a configurable
radius.

9.2. Alert Production Database (APDB)
The Alert Production Database (APDB; A. Salnikov

& J. McCormick 2024)) supports SQL, Postgres, and
Cassandra database formats. The previous history
of DiaObjects, DiaSources, and DiaForcedSources for
the region containing the science image is loaded with
loadDiaCatalogs, which are passed to diaPipe for as-
sociation. Loading is split from the association step
to enable preloading of catalogs from the database in
Prompt Processing during the interval when the next
visit has been scheduled but the images have not yet
been taken. When AP-style association is run outside
of Prompt Processing, it is therefore essential to pro-
cess all association tasks in strict visit order to prevent
loading catalogs from the APDB prematurely and losing
DiaObject history in association.

10. ALERT GENERATION
In order to to enable real-time science, the AP

pipelines generate alert packets for each detected DI-
ASource. These packets are serialized in Apache Avro14

format and then transmitted to community alert bro-
kers via Kafka for further processing. M. Patterson et al.
(2020) provides a high-level overview of the alert system.

Within the pipelines, alert packets are constructed
by packageAlertsTask within ap_association. Alert
packets contain the triggering DIASource record; the
associated DIAObject or SSObject record; up to twelve
months of past history from DIASources, DIAForced-
Sources, and/or upper limits; and cutout images of the
science, template, and difference images centered at the
position of the cutout. Cutouts are provided as FITS
images serialized by the astropy CCDData class, and in-

14 https://avro.apache.org/

https://avro.apache.org/

The LSST Science Pipelines 15

clude image, variance, and mask planes along with WCS
information and an image of the approximate PSF.

Avro schemas are stored in the alert_packet pack-
age. They are derived from the corresponding AP
schemas in sdm_schemas used to instantiate the AP
databases.

11. SOLAR SYSTEM PIPELINES

Night Day

Real time
alerts

𝜏+0: beginning of source association for a given visit
T+0: end of observing for the night

New orbits &
designations

from MPC

ObservingKnown SSO
Attribution

MPC submission

Linking
(heliolinx)

Eph. Cache
(Sorcha, mpsky)

Daily
Data Products

Production

Precovery

T+6 hrs

T+10 hrs
6-𝛿 hrs

T+11 hrs T+10-𝜀 hrs

10 hrs

Publication

T+24 hrs

1-𝜀 hrs

𝜏+0s

𝜏+5s

𝛿 hrs

T+0 hrs

𝜀 hrs

Figure 5. Detection, attribution, linking, submission and
precovery of moving sources within the nightly data: The
attribution is performed in real-time by the AP pipelines
querying the mpsky service with resulting information at-
tached to the alerts and queued for submission to the MPC.
The linking is performed in daytime using heliolinx, with
resulting links queued for submission to the MPC. Fetch-
ing of data from the MPC is performed automatically using
PostgreSQL replication, with new data triggering recompu-
tation of physical properties and precovery runs in the Daily
Data Products Pipeline. Any observations discovered by the
precovery procedure are queued for submission to the MPC,
using the submission manager tool. The ephemeris cache is
precomputed at dusk using Sorcha and mpsky, to enable fast
attribution at nighttime. All timings denote design goals.

The Solar System Pipeline (SSP; Figure 5) suite is re-
sponsible for (i) discovering previously unknown solar
system objects by linking together observations (usu-
ally DIASources) unattributable to static (non-moving)
sources, (ii) reporting these to the Minor Planet Cen-
ter (MPC), (iii) computing basic physical characteristics
such as absolute magnitudes and slope parameters for all
asteroids where sufficient data is available, and (iv) us-
ing the orbits received from the MPC to associate their
apparitions in the DIASource tables (both in real-time
and as precovery).

The core element of the SSP is the linking pipeline,
named heliolinx (A. Heinze et al. 2023). This code,
run in daytime, clusters newly detected DIAObjects to
search for candidate asteroids. The high-level procedure
is to link DIASource detections within a night (when on-
sky motion is approximately linear) into tracklets, to link
these tracklets across multiple nights (into tracks) and

to fit the tracks with an orbital model to identify those
tracks that are consistent with an asteroid orbit. The
Rubin implementation of this software (Heinze et al.,
in prep.) is based on the HelioLinC algorithm (M. J.
Holman et al. 2018), with the key change being that
the clustering is performed not on the sky, but in 3D
space. It is designed to be capable of detecting 95% of all
Solar System objects whose tracklets are observed over
three nights within a 15-night window.15. heliolinx is
written in C++, but provides a Python API including
a Task API.

Candidate discoveries with high degree of certainty,
as well as re-observations of already known objects, are
reported to the Minor Planet Center (MPC) using the
observation submission pipeline. The astrometric and
photometric data are converted to the PSV variant of
the Astrometric Data Exchange Standard (ADES; S. R.
Chesley et al. 2017), and submitted via a HTTPS POST
API provided by the MPC.

Following processing and validation of newly re-
ported candidates, they’re added to the MPC’s central
database. This database, including the table of orbits
as well as observations, is replicated using PostgreSQL
logical replication. Following the replication, the Daily
Data Products Pipeline recomputes the absolute mag-
nitudes of objects in the SSObject table, as well as some
auxiliary per-observation information for individual ob-
servations (the SSSource table).

The replicated orbits and computed absolute mag-
nitudes are utilized to predict positions (ephemerides)
and magnitudes of solar system objects in subsequent
night. To enable speedy retrieval (on order of 100msec
or less) of all objects in a visit, we precompute on-sky
locations of all solar system objects, fit Chebyshev
polynomials, and build an efficient HEALpix-based
index allowing for fast lookup. These ephemerides
are then served to association pipelines described in
Section 9.1. This element of the pipeline is based on
Sorcha (computation; Merritt et al. accepted) and
mpsky (fast lookup and serving; M. Juric 2014). While
still being constructed, a similar service is planned
for “precovery” – the association of originally missed
observations of solar system objects observed earlier in
the survey.

Taken together, this suite of pipelines enables Rubin
to identify sources consistent with being observations of
objects in the solar system (both new and previously
known), and makes these data public by reporting their

15 Detailed criteria are specified in the LSST Observatory System
Specification (OSS) document OSS-REQ-0159

16 Rubin Observatory Data Management Pipeline Developers

discoveries to the Minor Planet Center and making them
available to Rubin users within via the PPDB.

12. PIPELINES
12.1. Pex Config

Pex Config is the foundational configuration system
for the LSST Rubin Observatory’s ambitious science
pipelines. It’s far more than a simple parameter parser;
it’s a framework that mediates between diverse con-
figuration sources and the complex software that pro-
cesses astronomical data. At its core, Pex Config func-
tions as an intermediate representation, decoupling the
pipelines from the specifics of configuration file formats
(like YAML, JSON) and providing a unified, Python-
native interface to all configurable parameters. This in-
termediate representation, resembling a Domain Specific
Language embedded within Python, also allows leverag-
ing the full power of a programming language for parsing
or setting configuration values. An example of this can
be seen in the following code block which shows a frag-
ment used to configure one of the shape measurement
routines. This abstraction is critical for maintainabil-
ity, allowing the underlying file formats and or execu-
tion systems to evolve without impacting the pipeline
code. It also provides a mechanism to deprecate con-
figurables which will change in future versions of the
software stack, allowing users an easy migration path.

1 import os.path
2 from lsst.utils import getPackageDir
3

4 try:
5 location =

getPackageDir("meas_extensions_shapeHSM")
6 path = os.path.join(, "config", "enable.py")
7 config.load(path)
8 plugins = config.plugins
9 plugin =

plugins["ext_shapeHSM_HsmShapeRegauss"]
10 plugin.deblendNChild = "deblend_nChild"
11 # Enable debiased moments
12 config.plugins.names |=

["ext_shapeHSM_HsmPsfMomentsDebiased"]
13 except LookupError as e:
14 print("Cannot enable shapeHSM (%s): disabling

HSM shape measurements" % (e,))

Listing 1. Code configuration in python

The design of Pex Config centers around the con-
cepts of “Fields” and “Config” objects. Fields repre-
sent individual configurable values – things like expo-
sure times, image quality thresholds, or database con-
nection strings. Each Field is strongly typed, supporting
a variety of data types (such as integers, floats, strings,
booleans, and lists). Config objects, on the other hand,
are containers that group related Fields together, creat-
ing logical units of configuration. One of the highlights

of Pex Config is its composability. Config objects can
be nested within other Config objects using a special
“ConfigField,” allowing for the creation of complex, hi-
erarchical configuration trees that mirror the structure
of the pipelines themselves. This allows for modularity
and reuse of configuration components across different
parts of the system.

A strength of Pex Config is its flexible application
of configuration values. Values can be set at multiple
stages: via command-line arguments, loaded from con-
figuration files, or defined directly within the pipeline
code. Importantly, these stages are applied progres-
sively, with later stages overriding earlier ones. This
allows for a powerful combination of default settings,
user-defined customizations, and dynamic adjustments.
Mechanisms also exist to apply values to all instances of
a particular Config object within a tree, simplifying the
management of shared parameters and ensuring consis-
tency.

Beyond runtime configuration, Pex Config is deeply
concerned with data provenance and reproducibility. It
provides mechanisms for persisting and restoring config-
uration values, allowing for complete tracking of pipeline
parameters used in a particular data processing run.
Crucially, it also maintains a history of each Field’s
value, recording when and where it was set – whether via
the command line, a configuration file, or programmati-
cally. This detailed history is invaluable for debugging,
auditing, and ensuring the reproducibility of scientific
results. The system also incorporates robust validation
mechanisms, enabling checks on individual Fields and
groups of values before they are used by the pipelines,
preventing errors and ensuring data quality. Validation
can range from simple type checking, ensuring values fall
within acceptable ranges or specific patters, to complex
custom functions that enforce specific constraints.

Finally, Pex Config is designed with documentation in
mind. All Fields and Config objects can be richly doc-
umented using documentation strings and attributes.
This documentation structure is not only readable by
humans but can also be parsed by automated tools
to generate comprehensive documentation pages, elim-
inating the need for manual documentation creation.
This ensures that the configuration system is well-
documented and easy to understand, even for new de-
velopers. The system is flexible enough that it has been
adopted by the DRAGONS software (K. Labrie et al.
2023).

12.2. Pipeline Support
The Task Python class provides a standard interface

for how to execute an algorithm and has an associated

The LSST Science Pipelines 17

Config class which contains its configurable parameters.
The PipelineTask variant provides stronger guarantees
on configuration and provides a means by which the
pipeline execution framework can determine how to link
a task into a pipeline and how to determine what type
of data should be read from a Butler and what should
be written out to a Butler.

Pipeline in YAML.
Show plot of a simple pipeline visualization.
Graph building.
Show plot of a graph where a pipeline now includes

specific datasets as inputs.
Describe that provenance is stored in the output files

and in the graph itself.
Execution system and how BPS provides the interface

between a quantum graph and a workflow system.

12.3. Task library
12.4. pipe_tasks

Many subsections!

12.4.1. drp_tasks

Coaddition Tasks
The LSST Science Pipelines provide a modular task

framework for constructing coadds from multiple single-
epoch images. Coadds are used as static-sky templates
for image subtraction and detecting and measuring faint
sources. The coaddition process is divided into two main
stages: resampling the input images onto a common pro-
jection and stacking those resampled images into a sin-
gle coadd. Each stage is implemented via configurable
tasks that allow the pipelines to be adapted for dif-
ferent instruments and observing strategies. The first
step in coaddition is to resample each single-epoch ex-
posure onto a common projection and pixel grid called a
skyMap. This step is performed by the following Tasks:

• MakeDirectWarpTask performs a straightforward
resampling of calibrated exposures.

• MakePsfMatchedWarpTask also convolves them to
a configurable, common model-PSF. This PSF-
homogenized variant is useful when the scientific
goals require uniform PSF properties across the
coadd and is used for artifact rejection during
coaddition

All warping tasks use a configurable interpolation ker-
nel. A 5th-order Lanczos kernel is used by default, bal-
ancing fidelity and computational efficiency. Input im-
ages are geometrically transformed using the World Co-
ordinate System (WCS) and interpolated onto the target
projection defined by a tract and patch geometry. Each
resulting resampled image is called a warp.

Once warps are generated, they are stacked
into a final coadd by AssembleCoaddTask or one
of its subclasses. The default implementation,
CompareWarpAssembleCoaddTask, performs outlier re-
jection to remove transient artifacts such as cosmic
rays, satellite trails, and moving objects. The algo-
rithm compares pixel values across epochs and masks
those that significantly deviate from the expected dis-
tribution. The artifact rejection algorithm is detailed in
Y. AlSayyad (2019). By default, weights for stacking
are derived from the inverse of the average variance of
each warp, with optional filters on PSF quality and see-
ing. The stacked image is accompanied by a mask plane
and variance map, and the set of input PSF models
is combined into a spatially-varying coadd PSF model
(CoaddPsf) to serve as the PSF model for the coadd.

Users can adapt the pipeline to their data by mod-
ifying warp selection criteria, choosing a projection as
defined in a SkyMap object, and adjusting artifact re-
jection parameters. While the default LSST pipelines
build direct (non-PSF-matched) coadds for source de-
tection and measurement, the modularity of the task
framework makes it easy to substitute PSF-homogenized
coadds or experiment with alternative stacking strate-
gies (J. Bosch 2016).

12.4.2. Pipeline Visualization

Visualizing pipeline execution is crucial for under-
standing task dependencies, debugging, optimizing
workflows, and ensuring correct data flow within the
LSST Science Pipelines. To support this, pipetask
build provides several options for visualizing the
pipeline graph–a simplified directed acyclic graph that
shows how tasks relate to dataset types, without includ-
ing data IDs.

A text-based view can be generated using pipetask
build --show pipeline-graph, which outputs an
ASCII-style diagram. This format is especially useful
for quick inspection or when working in a terminal-
only environment. For graphical visualization, the
--pipeline-dot and --pipeline-mermaid options ex-
port the pipeline graph in Graphviz DOT16 and Mer-
maid17 formats, respectively. The Mermaid format is
particularly well-suited for sharing in accessible, web-
based contexts.

Unlike DOT files, which typically require rendering
with external tools like Graphviz’s dot, Mermaid defini-
tions can be directly rendered in Markdown-based plat-
forms such as GitHub, GitLab, some Jupyter environ-

16 https://www.graphviz.org
17 https://mermaid.js.org

https://www.graphviz.org
https://mermaid.js.org

18 Rubin Observatory Data Management Pipeline Developers

ments, and even Slack with the appropriate plugin. This
makes Mermaid an effective format for generating inter-
active, easily shareable pipeline graphs that can be di-
rectly embedded in documentation, notebooks, or code
review tools.

Figure 6 shows a visualization of a subset of two tasks
from the LSSTComCam/DRP-v2.yaml pipeline using the
Mermaid format. The diagram shows the relationships
between tasks and their input and output datasets as
well as the sequence in which the tasks are expected to
run. Such visualizations can help uncover misconfigu-
rations, missing inputs, or unexpected data dependen-
cies that might otherwise result in issues such as empty
QuantumGraphs or failed pipeline execution.

12.5. Pipeline Collections
12.5.1. Calibration pipelines

The pipelines to build calibration products (cp) for
the LSST cameras are defined in cp_pipe18. They set
isrTaskLSST configuration parameters needed for each
calibration product, by enabling all the sequential steps
of the ISR task up to the step before the correction be-
ing generated. In some cases, configurations also spec-
ify whether to combine exposures (for bias or dark ex-
posures for instance) and to bin exposures to support
display.

Once calibration products are produced, they are “ver-
ified” (see C. Waters (2025) for more details) using
cp_verify19 pipelines by checking they pass metrics de-
fined in R. Lupton et al. (2025). In this case, verify con-
figuration parameters enable all corrections in the ISR
task up to and including the application of the correc-
tion being verified. As a result, the calibration products
can then be certified to be available in the butler and
used to ISR an exposure.

12.5.2. drp_pipe

12.5.3. ap_pipe

The ap_pipe package defines the pipeline(s) to be
used for real-time Alert Production processing (K.-T.
Lim 2022). These pipelines include instrument signa-
ture removal (§5), calibration (§??), measurement plug-
ins (§6), image differencing (§7), source association (§9),
and alert generation (§10). Some of these tasks are
shared with the pipelines in drp_pipe, but configured
to prioritize speed over strict quality; for example, they
use a minimal set of measurement plugins.

18 https://github.com/lsst/cp_pipe and see documentation at
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-
calibrations.html

19 https://github.com/lsst/cp_verify

ap_pipe currently has pipeline variants for LSSTCam,
LSSTComCam, LATISS, the Rubin Observatory simu-
lators, Hyper-SuprimeCam, and the Dark Energy Cam-
era. Because these variants serve as testbeds for AP-
specific algorithms and configuration settings, they are,
as much as possible, the “same” pipeline, differing al-
most entirely in loading instrument defaults from obs
packages (§3.2). The only other customization is an
extra task for handling DECam’s inter-chip crosstalk,
which does not have an equivalent for Rubin instru-
ments.

13. CATALOG SCHEMAS
Must transform pipeline products from the internal

data model to the public data model defined in M. Jurić
et al. (2023).

sdm_schemas
felis (J. McCormick et al. 2024)

14. DISPLAY ABSTRACTIONS
The Python object representing an image with meta-

data is a bespoke object not understand by generic tool-
ing. To display an image we provide a display abstrac-
tion layer that allows the image to be displayed and
graphics overlaid by using a plugin mechanism.

In some plugins the pixel data can be extracted from
the exposure object and sent directly to display, in other
plugins we form a simple single HDU FITS image (pos-
sibly with simplified world coordinates) and pass the
temporary FITS file to the display system.

There a currently plugins for matplotlib (J. D. Hunter
2007), Firefly (W. Roby et al. 2020), SAOImage DS9
(W. A. Joye & E. Mandel 2003), and Ginga (E. Jeschke
et al. 2013, via Astrowidgets).

15. DATA ANALYSIS
15.0.1. Analysis Tools

The analysis_tools package provides a framework
to allow reproducible, automatic creation of plots and
metrics through a set of configurable, reusable tools that
can be used in pipeline execution and interactive anal-
ysis. The package allows metrics and plots to be con-
sistently created at various points in the pipeline and
ensures that the metrics dispatched to the monitoring
dashboard (better word?) are generated in sync with
the archived plots. The package was designed to handle
the large data volumes and memory requirements that
the survey will generate to ensure that the initial QA
products required are rapidly made and readily available
for fast action on any emergent data quality issues. The
individual tools run in the pipelines to calculate the met-
rics can then be reused in an interactive environment,

https://github.com/lsst/cp_pipe
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-calibrations.html
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-calibrations.html
https://github.com/lsst/cp_verify

The LSST Science Pipelines 19

isr

lsst.ip.isr.isrTaskLSST.IsrTaskLSST

dimensions: {detector, exposure}

crosstalk

dimensions: {detector}

storage class: CrosstalkCalib

defects

dimensions: {detector}

storage class: Defects

flat

dimensions: {detector, physical_filter}

storage class: ExposureF

linearizer

dimensions: {detector}

storage class: Linearizer

cti

dimensions: {detector}

storage class: IsrCalib

bfk

dimensions: {detector}

storage class: BrighterFatterKernel

camera

dimensions: {instrument}

storage class: Camera

ptc

dimensions: {detector}

storage class: PhotonTransferCurveDataset

raw

dimensions: {detector, exposure}

storage class: Exposure

post_isr_image

dimensions: {detector, exposure}

storage class: Exposure

isrStatistics

dimensions: {detector, exposure}

storage class: StructuredDataDict

calibrateImage

lsst.pipe.tasks.calibrateImage.CalibrateImageTask

dimensions: {detector, visit}

the_monster_20250219

dimensions: {htm7}

storage class: SimpleCatalog

illuminationCorrection

dimensions: {detector, physical_filter}

storage class: Exposure

preliminary_visit_image_background

dimensions: {detector, visit}

storage class: Background

preliminary_visit_image

dimensions: {detector, visit}

storage class: ExposureF

background_to_photometric_ratio

dimensions: {detector, visit}

storage class: Image

consolidateVisitSummary

lsst.pipe.tasks.postprocess.ConsolidateVisitSummaryTask

dimensions: {visit}

preliminary_visit_summary

dimensions: {visit}

storage class: ExposureCatalog

makeInitialVisitTable

lsst.pipe.tasks.postprocess.MakeVisitTableTask

dimensions: {instrument}

preliminary_visit_table

dimensions: {instrument}

storage class: ArrowAstropy

dark

bias

dimensions: {detector}

storage class: ExposureF

single_visit_star_footprints

single_visit_psf_star_footprints

dimensions: {detector, visit}

storage class: SourceCatalog

initial_photometry_match_detector

initial_astrometry_match_detector

dimensions: {detector, visit}

storage class: Catalog

single_visit_star_unstandardized

single_visit_psf_star

dimensions: {detector, visit}

storage class: ArrowAstropy

Figure 6. Example pipeline visualization of four selected tasks from the LSSTComCam/DRP-v2.yaml pipeline in the Mermaid
format. The diagram illustrates the flow of datasets between tasks, with dashed lines indicating prerequisite inputs. This
visualization helps validate task dependencies and the expected sequence of execution.

such as a script or notebook, allowing further investiga-
tion into arising issues to reproduce exactly what was
originally run.

15.0.2. Verification

verify
faro — do not document this as we are no

longer using it for primary metrics calculation.

16. VALIDATING THE SCIENCE PIPELINES
We use small, of order of a few gigabyte, datasets

that can be processed as part of continuous integration.
These take of order an hour to process. There are reg-
ular re-processings of standard datasets that can take
a few days to process. For formal data releases there
are additional metrics calculated and a test report is is-
sued, such as the one made available with release 28.0
(J. Carlin 2025).

16.1. Source Injection
The source_injection package contains tools de-

signed to assist in the injection of synthetic sources into
scientific imaging. Source injection is a powerful tool for
testing the algorithmic performance of the LSST Science
Pipelines, generating measurements on synthetic sources
where the truth is known and facilitating subsequent
quality assurance checks. Synthetic source generation
and injection capability is provided by the GalSim soft-
ware package (B. T. P. Rowe et al. 2015). An example
showcasing the injection of a series of synthetic Sérsic
sources into an HSC i-band image is shown in Figure 7.

Synthetic sources can be injected into any imaging
data product output by the LSST Science Pipelines, in-
cluding visit-level exposure-type or visit-type datasets

Figure 7. An HSC i-band cutout from tract 9813, patch
42, showing before (top) and after (bottom) the injection of a
series of synthetic Sérsic sources. Images are 100 arcseconds
on the short axis, log scaled across the central 99.5% flux
range, and smoothed with a Gaussian kernel of FWHM 3
pixels.

20 Rubin Observatory Data Management Pipeline Developers

(i.e., datasets with the dimension exposure or visit),
or into a coadd-level coadded dataset. These in-
jection tasks are defined in ExposureInjectTask,
VisitInjectTask and CoaddInjectTask, respectively.
Each task operates similarly: read in an injection catalog
containing the parameters of the sources to be injected,
generate sources using GalSim, and inject them into the
input image. An additonal mask plane (INJECTED by de-
fault) is appended to the image mask to identify pixels
which have been touched by injected sources. Optional
modifications to the noise profiles of injected sources and
the variance plane of the image can also be performed.

With GalSim we have the capacity to generate syn-
thetic sources of varying profile types, including Gaus-
sian, exponential and Sérsic profiles (J. L. Sérsic 1963,
1968), each convolved with the local PSF. We also have
the option to inject scaled versions of the PSF model
itself in order to simulate stars. If preferred, a pre-
generated FITS image of a source can be injected in-
stead of a model generated by GalSim, allowing for the
injection of complex sources or postage stamp cutouts
of real data.

Alongside the primary injection tasks, a suite of
helper tools are also provided to optionally assist in
the generation of synthetic source catalogs and injec-
tion pipelines. Fully qualified source injection pipeline
definition YAML files are normally constructed using an
existing pipeline as a baseline reference. A user specifies
which dataset type they would like to inject synthetic
sources into, and the source_injection package gen-
erates a new pipeline definition YAML file that includes
the correctly configured source injection task. By de-
fault, all tasks in the pipeline downstream of the point
at which source injection occurs are modified such that
their connection names are prefixed with injected_.
This ensures that an injected dataset is not confused

with the original dataset when stored together in a com-
mon collection.

Once source injection has completed, the source in-
jection task will output two dataset types: an injected
image, and an associated injected catalog. The injected
image is a copy of the original image with the injected
sources added. The injected catalog is a catalog of the
injected sources, with the same schema as the original
catalog and additional columns describing per-source
source injection success outcomes.

17. CONCLUSIONS
The LSST Science Pipelines Software has been de-

veloped over 20 years to support the processing of the
Legacy Survey of Space and Time.

ACKNOWLEDGMENTS
This material is based upon work supported in part
by the National Science Foundation through Coopera-
tive Agreement AST-1258333 and Cooperative Support
Agreement AST-1202910 managed by the Association
of Universities for Research in Astronomy (AURA), and
the Department of Energy under Contract No. DE-
AC02-76SF00515 with the SLAC National Accelerator
Laboratory managed by Stanford University. Addi-
tional Rubin Observatory funding comes from private
donations, grants to universities, and in-kind support
from LSSTC Institutional Members.

Facilities: Rubin:Simonyi (LSSTCam), Rubin:1.2m
(LATISS)

Software: ndarray (https://github.com/ndarray/
ndarray), astropy (Astropy Collaboration et al. 2022),
pytest (H. Krekel 2017), matplotlib (J. D. Hunter 2007),
galsim (B. T. P. Rowe et al. 2015), numpy (C. R. Harris
et al. 2020), gbdes (G. M. Bernstein 2022), Starlink’s
(D. Berry et al. 2022) AST (D. S. Berry et al. 2016),
fgcm (https://github.com/erykoff/fgcm),

REFERENCES

Alard, C., & Lupton, R. H. 1998, A Method for Optimal
Image Subtraction, ApJ, 503, 325, doi: 10.1086/305984

AlSayyad, Y. 2019, Coaddition Artifact Rejection and
CompareWarp, Data Management Technical Note
DMTN-080, Vera C. Rubin Observatory.
https://dmtn-080.lsst.io/

Astropy Collaboration, Price-Whelan, A. M., Sipőcz,
B. M., et al. 2018, The Astropy Project: Building an
Open-science Project and Status of the v2.0 Core
Package, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,
et al. 2022, The Astropy Project: Sustaining and
Growing a Community-oriented Open-source Project and
the Latest Major Release (v5.0) of the Core Package,
ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74

Axelrod, T., Connolly, A., Ivezic, Z., et al. 2004, The LSST
Data Processing Pipeline, in American Astronomical
Society Meeting Abstracts, Vol. 205, American
Astronomical Society Meeting Abstracts, 108.11

https://github.com/ndarray/ndarray
https://github.com/ndarray/ndarray
https://github.com/erykoff/fgcm
http://doi.org/10.1086/305984
https://dmtn-080.lsst.io/
http://doi.org/10.3847/1538-3881/aabc4f
http://doi.org/10.3847/1538-4357/ac7c74

The LSST Science Pipelines 21

Axelrod, T., Kantor, J., Lupton, R. H., & Pierfederici, F.
2010, An open source application framework for
astronomical imaging pipelines, in Proc. SPIE, Vol. 7740,
Software and Cyberinfrastructure for Astronomy, ed.
N. M. Radziwill & A. Bridger, 15, doi: 10.1117/12.857297

Berk, A., Anderson, G. P., Bernstein, L. S., et al. 1999,
MODTRAN4 radiative transfer modeling for atmospheric
correction, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 3756, Optical
Spectroscopic Techniques and Instrumentation for
Atmospheric and Space Research III, ed. A. M. Larar,
International Society for Optics and Photonics (SPIE),
348 – 353, doi: 10.1117/12.366388

Bernstein, G. M. 2022, gbdes: DECam instrumental
signature fitting and processing programs„ Astrophysics
Source Code Library, record ascl:2210.011

Bernstein, G. M., Armstrong, R., Plazas, A. A., et al. 2017,
Astrometric Calibration and Performance of the Dark
Energy Camera, PASP, 129, 074503,
doi: 10.1088/1538-3873/aa6c55

Berry, D., Graves, S., Bell, G. S., et al. 2022, Starlink - The
Original and Best, in Astronomical Society of the Pacific
Conference Series, Vol. 532, Astronomical Data Analysis
Software and Systems XXX, ed. J. E. Ruiz,
F. Pierfedereci, & P. Teuben, 559

Berry, D. S., Warren-Smith, R. F., & Jenness, T. 2016,
AST: A library for modelling and manipulating
coordinate systems, Astronomy and Computing, 15, 33,
doi: 10.1016/j.ascom.2016.02.003

Bertin, E. 2011, Automated Morphometry with SExtractor
and PSFEx, in Astronomical Society of the Pacific
Conference Series, Vol. 442, Astronomical Data Analysis
Software and Systems XX, ed. I. N. Evans,
A. Accomazzi, D. J. Mink, & A. H. Rots, 435

Bloom, J. S., Richards, J. W., Nugent, P. E., et al. 2012,
Automating Discovery and Classification of Transients
and Variable Stars in the Synoptic Survey Era, PASP,
124, 1175, doi: 10.1086/668468

Bohlin, R. C. 2007, HST Stellar Standards with 1%
Accuracy in Absolute Flux, in Astronomical Society of
the Pacific Conference Series, Vol. 364, The Future of
Photometric, Spectrophotometric and Polarimetric
Standardization, ed. C. Sterken, 315,
doi: 10.48550/arXiv.astro-ph/0608715

Bosch, J. 2016, Flavors of Coadds, Data Management
Technical Note DMTN-015, Vera C. Rubin Observatory.
https://dmtn-015.lsst.io/

Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, The
Hyper Suprime-Cam software pipeline, PASJ, 70, S5,
doi: 10.1093/pasj/psx080

Boulade, O., Charlot, X., Abbon, P., et al. 2003, MegaCam:
the new Canada-France-Hawaii Telescope wide-field
imaging camera, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 4841, Instrument Design and Performance for
Optical/Infrared Ground-based Telescopes, ed. M. Iye &
A. F. M. Moorwood, 72–81, doi: 10.1117/12.459890

Broughton, A., Utsumi, Y., Plazas Malagón, A. A., et al.
2024, Mitigation of the Brighter-fatter Effect in the LSST
Camera, PASP, 136, 045003,
doi: 10.1088/1538-3873/ad3aa2

Burke, D. L., Rykoff, E. S., Allam, S., et al. 2018, Forward
Global Photometric Calibration of the Dark Energy
Survey, AJ, 155, 41, doi: 10.3847/1538-3881/aa9f22

Cai, M., Xu, Z., Fan, L., et al. 2025, The 2.5-meter Wide
Field Survey Telescope Real-time Data Processing
Pipeline I: From raw data to alert distribution, arXiv
e-prints, arXiv:2501.15018,
doi: 10.48550/arXiv.2501.15018

Carlin, J. 2025, Characterization Metric Report: Science
Pipelines Version 28.0.0, Data Management Test Report
DMTR-451, Vera C. Rubin Observatory.
https://dmtr-451.lsst.io/

Chesley, S. R., Hockney, G. M., & Holman, M. J. 2017,
Introducing ADES: A New IAU Astrometry Data
Exchange Standard, in AAS/Division for Planetary
Sciences Meeting Abstracts, Vol. 49, AAS/Division for
Planetary Sciences Meeting Abstracts #49, 112.14

DePoy, D. L., Abbott, T., Annis, J., et al. 2008, The Dark
Energy Camera (DECam), in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 7014, Ground-based and Airborne Instrumentation
for Astronomy II, ed. I. S. McLean & M. M. Casali,
70140E, doi: 10.1117/12.789466

Duev, D. A., Mahabal, A., Masci, F. J., et al. 2019,
Real-bogus classification for the Zwicky Transient
Facility using deep learning, MNRAS, 489, 3582,
doi: 10.1093/mnras/stz2357

Esteves, J. H., Utsumi, Y., Snyder, A., et al. 2023,
Photometry, Centroid and Point-spread Function
Measurements in the LSST Camera Focal Plane Using
Artificial Stars, PASP, 135, 115003,
doi: 10.1088/1538-3873/ad0a73

Fagrelius, P., & Rykoff, E. 2025, Rubin Baseline Calibration
Plan, Commissioning Technical Note SITCOMTN-086,
Vera C. Rubin Observatory. https://sitcomtn-086.lsst.io/

Fausti, A. 2023, Sasquatch: beyond the EFD, SQuaRE
Technical Note SQR-068, Vera C. Rubin Observatory.
https://sqr-068.lsst.io/

http://doi.org/10.1117/12.857297
http://doi.org/10.1117/12.366388
http://doi.org/10.1088/1538-3873/aa6c55
http://doi.org/10.1016/j.ascom.2016.02.003
http://doi.org/10.1086/668468
http://doi.org/10.48550/arXiv.astro-ph/0608715
https://dmtn-015.lsst.io/
http://doi.org/10.1093/pasj/psx080
http://doi.org/10.1117/12.459890
http://doi.org/10.1088/1538-3873/ad3aa2
http://doi.org/10.3847/1538-3881/aa9f22
http://doi.org/10.48550/arXiv.2501.15018
https://dmtr-451.lsst.io/
http://doi.org/10.1117/12.789466
http://doi.org/10.1093/mnras/stz2357
http://doi.org/10.1088/1538-3873/ad0a73
https://sitcomtn-086.lsst.io/
https://sqr-068.lsst.io/

22 Rubin Observatory Data Management Pipeline Developers

Fausti Neto, A., Economou, F., Reuter, M. A., et al. 2024,
Sasquatch: Rubin Observatory metrics and telemetry
service, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 13101, Software
and Cyberinfrastructure for Astronomy VIII, ed. J. Ibsen
& G. Chiozzi, 131011M, doi: 10.1117/12.3019081

Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, The
Dark Energy Camera, The Astronomical Journal, 150,
150, doi: 10.1088/0004-6256/150/5/150

Goldstein, D. A., D’Andrea, C. B., Fischer, J. A., et al.
2015, Automated Transient Identification in the Dark
Energy Survey, AJ, 150, 82,
doi: 10.1088/0004-6256/150/3/82

Gower, M., Kowalik, M., Lust, N. B., Bosch, J. F., &
Jenness, T. 2022, Adding Workflow Management
Flexibility to LSST Pipelines Execution, arXiv e-prints,
arXiv:2211.15795, doi: 10.48550/arXiv.2211.15795

Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
2020, Array programming with NumPy, Nature, 585, 357,
doi: 10.1038/s41586-020-2649-2

Heinze, A., Juric, M., & Kurlander, J. 2023, heliolinx: Open
Source Solar System Discovery Software,

Hirata, C., & Seljak, U. 2003, Shear calibration biases in
weak-lensing surveys, MNRAS, 343, 459,
doi: 10.1046/j.1365-8711.2003.06683.x

Holman, M. J., Payne, M. J., Blankley, P., Janssen, R., &
Kuindersma, S. 2018, HelioLinC: A Novel Approach to
the Minor Planet Linking Problem, AJ, 156, 135,
doi: 10.3847/1538-3881/aad69a

Hunter, J. D. 2007, Matplotlib: A 2D Graphics
Environment, Computing in Science and Engineering, 9,
90, doi: 10.1109/MCSE.2007.55

Ingraham, P., Clements, A. W., Ribeiro, T., et al. 2020,
Vera C. Rubin Observatory auxiliary telescope
commissioning as a control system pathfinder, in Society
of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 11452, Software and
Cyberinfrastructure for Astronomy VI, ed. J. C. Guzman
& J. Ibsen, 114520U, doi: 10.1117/12.2561112

Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, LSST:
From Science Drivers to Reference Design and
Anticipated Data Products, ApJ, 873, 111,
doi: 10.3847/1538-4357/ab042c

Jarvis, M., Meyers, J., Leget, P.-F., & Davis, C. 2021a, Piff:
PSFs In the Full FOV„ Astrophysics Source Code
Library, record ascl:2102.024

Jarvis, M., Bernstein, G. M., Amon, A., et al. 2021b, Dark
Energy Survey year 3 results: point spread function
modelling, MNRAS, 501, 1282,
doi: 10.1093/mnras/staa3679

Jenness, T. 2020, Modern Python at the Large Synoptic
Survey Telescope, in Astronomical Society of the Pacific
Conference Series, Vol. 522, Astronomical Data Analysis
Software and Systems XXVII, ed. P. Ballester, J. Ibsen,
M. Solar, & K. Shortridge, 541,
doi: 10.48550/arXiv.1712.00461

Jenness, T., Economou, F., Findeisen, K., et al. 2018, LSST
data management software development practices and
tools, in Proc. SPIE, Vol. 10707, Software and
Cyberinfrastructure for Astronomy V, 1070709,
doi: 10.1117/12.2312157

Jenness, T., Bosch, J., Owen, R., et al. 2016, Investigating
interoperability of the LSST data management software
stack with Astropy, in Proc. SPIE, Vol. 9913, Software
and Cyberinfrastructure for Astronomy IV, 99130G,
doi: 10.1117/12.2231313

Jenness, T., Bosch, J. F., Salnikov, A., et al. 2022, The
Vera C. Rubin Observatory Data Butler and pipeline
execution system, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 12189, Software and Cyberinfrastructure for
Astronomy VII, 1218911, doi: 10.1117/12.2629569

Jeschke, E., Inagaki, T., & Kackley, R. 2013, Introducing
the Ginga FITS Viewer and Toolkit, in Astronomical
Society of the Pacific Conference Series, Vol. 475,
Astronomical Data Analysis Software and Systems XXII,
ed. D. N. Friedel, 319

Joye, W. A., & Mandel, E. 2003, New Features of
SAOImage DS9, in Astronomical Society of the Pacific
Conference Series, Vol. 295, Astronomical Data Analysis
Software and Systems XII, ed. H. E. Payne, R. I.
Jedrzejewski, & R. N. Hook, 489

Juric, M. 2014, mpsky: Multi-purpose sky catalog
cross-matching,

Jurić, M., Ciardi, D., Dubois-Felsmann, G., & Guy, L.
2019, LSST Science Platform Vision Document, Systems
Engineering Controlled Document LSE-319, Vera C.
Rubin Observatory. https://lse-319.lsst.io/

Jurić, M., Kantor, J., Lim, K. T., et al. 2017, The LSST
Data Management System, in Astronomical Society of
the Pacific Conference Series, Vol. 512, Astronomical
Data Analysis Software and Systems XXV, ed. N. P. F.
Lorente, K. Shortridge, & R. Wayth, 279,
doi: 10.48550/arXiv.1512.07914

Jurić, M., Axelrod, T., Becker, A., et al. 2023, Data
Products Definition Document, Systems Engineering
Controlled Document LSE-163, Vera C. Rubin
Observatory. https://lse-163.lsst.io/

http://doi.org/10.1117/12.3019081
http://doi.org/10.1088/0004-6256/150/5/150
http://doi.org/10.1088/0004-6256/150/3/82
http://doi.org/10.48550/arXiv.2211.15795
http://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.1046/j.1365-8711.2003.06683.x
http://doi.org/10.3847/1538-3881/aad69a
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.1117/12.2561112
http://doi.org/10.3847/1538-4357/ab042c
http://doi.org/10.1093/mnras/staa3679
http://doi.org/10.48550/arXiv.1712.00461
http://doi.org/10.1117/12.2312157
http://doi.org/10.1117/12.2231313
http://doi.org/10.1117/12.2629569
https://lse-319.lsst.io/
http://doi.org/10.48550/arXiv.1512.07914
https://lse-163.lsst.io/

The LSST Science Pipelines 23

Kahn, S. M., Kurita, N., Gilmore, K., et al. 2010, Design
and development of the 3.2 gigapixel camera for the
Large Synoptic Survey Telescope, in Society of
Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 7735, Ground-based and Airborne
Instrumentation for Astronomy III, ed. I. S. McLean,
S. K. Ramsay, & H. Takami, 0, doi: 10.1117/12.857920

Kannawadi, A. 2022, Consistent galaxy colors with
Gaussian-Aperture and PSF photometry, Data
Management Technical Note DMTN-190, Vera C. Rubin
Observatory. https://dmtn-190.lsst.io/

Karavakis, E., Guan, W., Yang, Z., et al. 2024, Integrating
the PanDA Workload Management System with the Vera
C. Rubin Observatory, in European Physical Journal
Web of Conferences, Vol. 295, European Physical Journal
Web of Conferences (EDP), 04026,
doi: 10.1051/epjconf/202429504026

Knight, S. 2005, Building software with SCons, Computing
in Science Engineering, 7, 79, doi: 10.1109/MCSE.2005.11

Krekel, H. 2017, pytest: helps you write better programs,
https://docs.pytest.org

Kuijken, K. 2008, GaaP: PSF- and aperture-matched
photometry using shapelets, A&A, 482, 1053,
doi: 10.1051/0004-6361:20066601

Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015,
Gravitational lensing analysis of the Kilo-Degree Survey,
MNRAS, 454, 3500, doi: 10.1093/mnras/stv2140

Labrie, K., Simpson, C., Cardenes, R., et al. 2023,
DRAGONS-A Quick Overview, Research Notes of the
American Astronomical Society, 7, 214,
doi: 10.3847/2515-5172/ad0044

Lange, T., Nordby, M., Pollek, H., et al. 2024, Integrating
the LSST camera, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 13096, Ground-based and Airborne Instrumentation
for Astronomy X, ed. J. J. Bryant, K. Motohara, &
J. R. D. Vernet, 130961O, doi: 10.1117/12.3019302

Li, X., Miyatake, H., Luo, W., et al. 2022, The three-year
shear catalog of the Subaru Hyper Suprime-Cam SSP
Survey, PASJ, 74, 421, doi: 10.1093/pasj/psac006

Lim, K.-T. 2022, Proposal and Prototype for Prompt
Processing, Data Management Technical Note
DMTN-219, Vera C. Rubin Observatory.
https://dmtn-219.lsst.io/

Lupton, R., Malagón, A. A. P., & Waters, C. 2025,
Verifying LSST Calibration Data Products, Data
Management Technical Note DMTN-101, Vera C. Rubin
Observatory. https://dmtn-101.lsst.io/

Lust, N. B., Jenness, T., Bosch, J. F., et al. 2023, Data
management and execution systems for the Rubin
Observatory Science Pipelines, arXiv e-prints,
arXiv:2303.03313, doi: 10.48550/arXiv.2303.03313

Mandelbaum, R., Hirata, C. M., Seljak, U., et al. 2005,
Systematic errors in weak lensing: application to SDSS
galaxy-galaxy weak lensing, MNRAS, 361, 1287,
doi: 10.1111/j.1365-2966.2005.09282.x

Mandelbaum, R., Miyatake, H., Hamana, T., et al. 2018,
The first-year shear catalog of the Subaru Hyper
Suprime-Cam Subaru Strategic Program Survey, PASJ,
70, S25, doi: 10.1093/pasj/psx130

McCormick, J., Dubois-Felsmann, G. P., Salnikov, A., Van
Klaveren, B., & Jenness, T. 2024, Using Felis to
Represent the Semantics and Metadata of Astronomical
Data Catalogs, arXiv e-prints, arXiv:2412.09721,
doi: 10.48550/arXiv.2412.09721

Melchior, P., Joseph, R., & Moolekamp, F. 2019, Proximal
Adam: Robust Adaptive Update Scheme for Constrained
Optimization, arXiv e-prints, arXiv:1910.10094,
doi: 10.48550/arXiv.1910.10094

Melchior, P., Moolekamp, F., Jerdee, M., et al. 2018,
SCARLET: Source separation in multi-band images by
Constrained Matrix Factorization, Astronomy and
Computing, 24, 129, doi: 10.1016/j.ascom.2018.07.001

Miyazaki, S., Komiyama, Y., Kawanomoto, S., et al. 2018,
Hyper Suprime-Cam: System design and verification of
image quality, PASJ, 70, S1, doi: 10.1093/pasj/psx063

Morrison, C. B. 2018, Pessimistic Pattern Matching for
LSST, Data Management Technical Note DMTN-031,
Vera C. Rubin Observatory. https://dmtn-031.lsst.io/

Mueller, F., et al. 2023, Qserv: A Distributed Petascale
Database for the LSST Catalogs, in ASP Conf. Ser., Vol.
TBD, ADASS XXXII, ed. S. Gaudet, S. Gwyn,
P. Dowler, D. Bohlender, & A. Hincks (San Francisco:
ASP), in press. https://dmtn-243.lsst.io

Mullaney, J. R., Makrygianni, L., Dhillon, V., et al. 2021,
Processing GOTO data with the Rubin Observatory
LSST Science Pipelines I: Production of coadded frames,
PASA, 38, e004, doi: 10.1017/pasa.2020.45

of Washington), J. P. U., & Paris), P. A. L. 2018, jointcal:
Simultaneous Astrometry & Photometry for thousands of
Exposures with Large CCD Mosaics, Data Management
Technical Note DMTN-036, Vera C. Rubin Observatory.
https://dmtn-036.lsst.io/

http://doi.org/10.1117/12.857920
https://dmtn-190.lsst.io/
http://doi.org/10.1051/epjconf/202429504026
http://doi.org/10.1109/MCSE.2005.11
https://docs.pytest.org
http://doi.org/10.1051/0004-6361:20066601
http://doi.org/10.1093/mnras/stv2140
http://doi.org/10.3847/2515-5172/ad0044
http://doi.org/10.1117/12.3019302
http://doi.org/10.1093/pasj/psac006
https://dmtn-219.lsst.io/
https://dmtn-101.lsst.io/
http://doi.org/10.48550/arXiv.2303.03313
http://doi.org/10.1111/j.1365-2966.2005.09282.x
http://doi.org/10.1093/pasj/psx130
http://doi.org/10.48550/arXiv.2412.09721
http://doi.org/10.48550/arXiv.1910.10094
http://doi.org/10.1016/j.ascom.2018.07.001
http://doi.org/10.1093/pasj/psx063
https://dmtn-031.lsst.io/
https://dmtn-243.lsst.io
http://doi.org/10.1017/pasa.2020.45
https://dmtn-036.lsst.io/

24 Rubin Observatory Data Management Pipeline Developers

Okura, Y., Petri, A., May, M., Plazas, A. A., & Tamagawa,
T. 2016, Consequences of CCD Imperfections for
Cosmology Determined by Weak Lensing Surveys: From
Laboratory Measurements to Cosmological Parameter
Bias, The Astrophysical Journal, 825, 61,
doi: 10.3847/0004-637X/825/1/61

Okura, Y., Plazas, A. A., May, M., & Tamagawa, T. 2015,
Spurious shear induced by the tree rings of the LSST
CCDs, Journal of Instrumentation, 10, C08010,
doi: 10.1088/1748-0221/10/08/C08010

O’Mullane, W., Economou, F., Lim, K.-T., et al. 2022,
Software Architecture and System Design of Rubin
Observatory, arXiv e-prints, arXiv:2211.13611,
doi: 10.48550/arXiv.2211.13611

O’Mullane, W., Economou, F., Huang, F., et al. 2024,
Rubin Science Platform on Google: the story so far, in
Astronomical Society of the Pacific Conference Series,
Vol. 535, Astromical Data Analysis Software and Systems
XXXI, ed. B. V. Hugo, R. Van Rooyen, & O. M.
Smirnov, 227, doi: 10.48550/arXiv.2111.15030

O’Mullane, W., Allbery, R., AlSayyad, Y., et al. 2024,
Rubin Observatory Data Security Standards
Implementation, Data Management Technical Note
DMTN-199, Vera C. Rubin Observatory.
https://dmtn-199.lsst.io/

Padmanabhan, N., Lupton, R., & Loomis, C. 2015, EUPS
— a Tool to Manage Software Dependencies,
https://github.com/RobertLuptonTheGood/eups

Park, H., Karpov, S., Nomerotski, A., & Tsybychev, D.
2020, Tree rings in Large Synoptic Survey Telescope
production sensors: its dependence on radius, wavelength,
and back bias voltage, Journal of Astronomical
Telescopes, Instruments, and Systems, 6, 011005,
doi: 10.1117/1.JATIS.6.1.011005

Park, H. Y., Nomerotski, A., & Tsybychev, D. 2017,
Properties of tree rings in LSST sensors, Journal of
Instrumentation, 12, C05015,
doi: 10.1088/1748-0221/12/05/C05015

Paszke, A., Gross, S., Massa, F., et al. 2019, PyTorch: An
Imperative Style, High-Performance Deep Learning
Library, in Advances in Neural Information Processing
Systems, ed. H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, & R. Garnett, Vol. 32 (Curran
Associates, Inc.), doi: 10.48550/arXiv.1912.01703

Patterson, M., Bellm, E., Swinbank, J., & Nelson, S. 2020,
Design of the LSST Alert Distribution System, Data
Management Technical Note DMTN-093, Vera C. Rubin
Observatory. https://dmtn-093.lsst.io/

Pier, J. R., Munn, J. A., Hindsley, R. B., et al. 2003,
Astrometric Calibration of the Sloan Digital Sky Survey,
AJ, 125, 1559, doi: 10.1086/346138

Plazas Malagón, A. A., Waters, C., Broughton, A., et al.
2024, Instrument Signature Removal and Calibration
Products for the Rubin Legacy Survey of Space and
Time, arXiv e-prints, arXiv:2404.14516,
doi: 10.48550/arXiv.2404.14516

Reiss, D. J., & Lupton, R. H. 2016, Implementation of
Image Difference Decorrelation, Data Management
Technical Note DMTN-021, Vera C. Rubin Observatory.
https://dmtn-021.lsst.io/

Roby, W., Wu, X., Dubois–Felmann, G., et al. 2020, Firefly
and Python — New Ways to Visualize Data on the Web,
in Astronomical Society of the Pacific Conference Series,
Vol. 527, Astronomical Data Analysis Software and
Systems XXIX, ed. R. Pizzo, E. R. Deul, J. D. Mol, J. de
Plaa, & H. Verkouter, 243

Roodman, A., Rasmussen, A., Bradshaw, A., et al. 2024,
LSST camera verification testing and characterization, in
Ground-based and Airborne Instrumentation for
Astronomy X, ed. J. J. Bryant, K. Motohara, & J. R. D.
Vernet, Vol. 13096, International Society for Optics and
Photonics (SPIE), 130961S, doi: 10.1117/12.3019698

Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015,
GALSIM: The modular galaxy image simulation toolkit,
Astronomy and Computing, 10, 121,
doi: 10.1016/j.ascom.2015.02.002

Salnikov, A., & McCormick, J. 2024, Current status of
APDB and PPDB implementation, Data Management
Technical Note DMTN-293, Vera C. Rubin Observatory.
https://dmtn-293.lsst.io/

Saunders, C. 2024, Astrometric Calibration in the LSST
Pipeline, Data Management Technical Note DMTN-266,
Vera C. Rubin Observatory. https://dmtn-266.lsst.io/

Schutt, T., Jarvis, M., Roodman, A., et al. 2025, Dark
Energy Survey Year 6 Results: Point-Spread Function
Modeling, The Open Journal of Astrophysics, 8, 26,
doi: 10.33232/001c.132299

Sérsic, J. L. 1963, Influence of the atmospheric and
instrumental dispersion on the brightness distribution in
a galaxy, Boletin de la Asociacion Argentina de
Astronomia La Plata Argentina, 6, 41

Sérsic, J. L. 1968, Atlas de Galaxias Australes
(Observatorio Astronomico, Universidad Nacional de
Cordoba)

http://doi.org/10.3847/0004-637X/825/1/61
http://doi.org/10.1088/1748-0221/10/08/C08010
http://doi.org/10.48550/arXiv.2211.13611
http://doi.org/10.48550/arXiv.2111.15030
https://dmtn-199.lsst.io/
https://github.com/RobertLuptonTheGood/eups
http://doi.org/10.1117/1.JATIS.6.1.011005
http://doi.org/10.1088/1748-0221/12/05/C05015
http://doi.org/10.48550/arXiv.1912.01703
https://dmtn-093.lsst.io/
http://doi.org/10.1086/346138
http://doi.org/10.48550/arXiv.2404.14516
https://dmtn-021.lsst.io/
http://doi.org/10.1117/12.3019698
http://doi.org/10.1016/j.ascom.2015.02.002
https://dmtn-293.lsst.io/
https://dmtn-266.lsst.io/
http://doi.org/10.33232/001c.132299

The LSST Science Pipelines 25

Shupe, D. L., Moshir, M., Li, J., et al. 2005, The SIP
Convention for Representing Distortion in FITS Image
Headers, in Astronomical Society of the Pacific
Conference Series, Vol. 347, Astronomical Data Analysis
Software and Systems XIV, ed. P. Shopbell, M. Britton,
& R. Ebert, 491

Sutherland, W., Emerson, J., Dalton, G., et al. 2015, The
Visible and Infrared Survey Telescope for Astronomy
(VISTA): Design, technical overview, and performance,
A&A, 575, A25, doi: 10.1051/0004-6361/201424973

Tabur, V. 2007, Fast Algorithms for Matching CCD Images
to a Stellar Catalogue, PASA, 24, 189,
doi: 10.1071/AS07028

Taranu, D. S. 2025, The MultiProFit astronomical source
modelling code, Data Management Technical Note
DMTN-312, Vera C. Rubin Observatory.
https://dmtn-312.lsst.io/

Thomas, S. J., Barr, J., Callahan, S., et al. 2022, Rubin
Observatory Simonyi Survey Telescope status overview,
in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 12182, Ground-based and
Airborne Telescopes IX, ed. H. K. Marshall,
J. Spyromilio, & T. Usuda, 121820W,
doi: 10.1117/12.2630226

Utsumi, Y., Antilogus, P., Astier, P., et al. 2024, LSST
Camera focal plane optimization, in X-Ray, Optical, and
Infrared Detectors for Astronomy XI, ed. A. D. Holland
& K. Minoglou, Vol. 13103, International Society for
Optics and Photonics (SPIE), 131030W,
doi: 10.1117/12.3019117

van Rossum, G. 2013, PEP 8 – Style Guide for Python
Code, Python Software Foundation.
https://www.python.org/dev/peps/pep-0008/

Wang, D. L., Monkewitz, S. M., Lim, K.-T., & Becla, J.
2011, Qserv: A Distributed Shared-nothing Database for
the LSST Catalog, in State of the Practice Reports, SC
’11 (New York, NY, USA: ACM), 12:1–12:11,
doi: 10.1145/2063348.2063364

Wang, S.-Y., Huang, P.-J., Chen, H.-Y., et al. 2020, Prime
Focus Spectrograph (PFS): the prime focus instrument,
in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 11447, Ground-based and
Airborne Instrumentation for Astronomy VIII, ed. C. J.
Evans, J. J. Bryant, & K. Motohara, 114477V,
doi: 10.1117/12.2561194

Waters, C. 2025, Calibration Generation, Verification,
Acceptance, and Certification., Data Management
Technical Note DMTN-222, Vera C. Rubin Observatory.
https://dmtn-222.lsst.io/

Waters, C. Z., Magnier, E. A., Price, P. A., et al. 2020,
Pan-STARRS Pixel Processing: Detrending, Warping,
Stacking, ApJS, 251, 4, doi: 10.3847/1538-4365/abb82b

Wright, A. H., Kuijken, K., Hildebrandt, H., et al. 2025,
The fifth data release of the Kilo Degree Survey:
Multi-epoch optical/NIR imaging covering wide and
legacy-calibration fields, arXiv e-prints,
arXiv:2503.19439. https://arxiv.org/abs/2503.19439

Zackay, B., Ofek, E. O., & Gal-Yam, A. 2016, Proper Image
Subtraction—Optimal Transient Detection, Photometry,
and Hypothesis Testing, ApJ, 830, 27,
doi: 10.3847/0004-637X/830/1/27

http://doi.org/10.1051/0004-6361/201424973
http://doi.org/10.1071/AS07028
https://dmtn-312.lsst.io/
http://doi.org/10.1117/12.2630226
http://doi.org/10.1117/12.3019117
https://www.python.org/dev/peps/pep-0008/
http://doi.org/10.1145/2063348.2063364
http://doi.org/10.1117/12.2561194
https://dmtn-222.lsst.io/
http://doi.org/10.3847/1538-4365/abb82b
https://arxiv.org/abs/2503.19439
http://doi.org/10.3847/0004-637X/830/1/27

