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ABSTRACT
The Vera C. Rubin Observatory will produce the Legacy Survey of Space and Time (LSST) and

produce 11 data releases over the ten-year survey. The LSST Science Pipelines Software will be used
to create these data releases and to perform the nightly alert. This paper provides an overview of the
LSST Science Pipelines Software and describes the components and how they are combined to form
pipelines.
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1. INTRODUCTION
The Vera C. Rubin Observatory will be performing the

10-year Legacy Survey of Space and Time (LSST; Ivezić
et al. 2019) starting in 2025. Rubin Observatory is lo-
cated on Cerro Pachon in Chile and consists of the 8.4 m
Simonyi Survey Telescope with the 3.4-gigapixel LSST-
Cam survey camera performing the main survey and the
Rubin Auxiliary Telescope providing supplementary at-
mospheric calibration data. The Data Management Sys-
tem (DMS; O’Mullane et al. 2022) is designed to handle
the flow of data from the telescope, approaching 20 TB
per night, in order to issue alerts and to prepare annual
data releases. A central component of the DMS is the
LSST Science Pipelines software that provides the al-
gorithms and frameworks required to process the data
from the LSST and generate the coadds, difference im-
ages, and catalogs to the user community for scientific
analysis.

The LSST Science Pipelines software consists of the
building blocks and pipeline infrastructure required to
construct high performance pipelines to process the data
from LSST. It has been under development since at least
2004 (Axelrod et al. 2004) and has evolved significantly
over the years as the project transitioned from prototyp-
ing (Axelrod et al. 2010) and entered into formal con-
struction (Jurić et al. 2017). The software is designed to
be usable by other optical telescopes and this has been

demonstrated with Hyper Suprime Cam on the Subaru
Telescope in Hawaii (Bosch et al. 2018) and also with
data from the Dark Energy Camera (DECam).

In this paper we provide an overview of the compo-
nents of the software system. This includes a description
of the support libraries and data access abstraction, the
pipeline task system, and an overview of the algorith-
mic components. We do not include details of the sci-
ence validation of the individual algorithms. The other
components of the LSST DMS, such as the workflow
system (Gower et al. 2022), the Qserv database (Wang
et al. 2011) and the Rubin Science Platform (Jurić et al.
2019), are not covered in this paper.

2. FUNDAMENTALS
The LSST Science Pipelines software is written in

Python with C++ used for high performance algorithms
and for core classes that are usable in both languages.
We use Python 3 (having ported from python 2, Jenness
2020, currently with a minimum version of Python 3.11),
and the C++ layer can use C++17 features with py-
bind11 being used to provide the interface from Python
to C++. Additionally, the C++ layer uses ndarray
to allow seamless passing of C++ arrays to and from
Python numpy arrays. This compatibility with numpy is
important in that it makes LSST data structures avail-
able to standard Python libraries such as Scipy and As-
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Figure 1. The number of lines of code comprising the LSST
Science Pipelines software as a function of time. Line counts
include comments but not blank lines. Python interfaces are
implemented using pybind11 and that is counted as C++
code. For the purposes of this count Science pipelines soft-
ware is defined as the lsst_distrib metapackage and does
not include code from third party packages.

tropy (Jenness et al. 2016; Astropy Collaboration et al.
2018).

Although all the software uses the lsst namespace,
the code base is split into individual Python products
in the LSST GitHub organization1 that can be installed
independently and which declare their own dependen-
cies. These dependencies are managed using the EUPS
(Padmanabhan et al. 2015; Jenness et al. 2018) where
most of the products are built using the SCons system
(Knight 2005) with LSST-specific extensions provided in
the sconsUtils package enforcing standard build rules.

For logging we always use standard Python logging
with an additional VERBOSE log level between INFO and
DEBUG to provide additional non-debugging detail that
can be enabled during batch processing. This verbose
logging is used for periodic logging where long-lived
analysis tasks are required to issue a log message ev-
ery 10 minutes to indicate to the batch system that
they are still alive and actively performing work. For
logging from C++ we use Log4CXX wrapped in the
lsst.log package to make it look more like standard
Python logging, whilst also supporting deferred string
formatting such that log messages are only formed if
the log message level is sufficient for the message to
be logged. These C++ log messages are forwarded to
Python rather than being issued from an independent
logging stream. Finally, we also provide some LSST-
specific exceptions that can be thrown from C++ code
and caught in Python.

As of April 2024, the Science Pipelines software is ap-
proximately 640,000 lines of Python and 225,000 lines

1 https://github.com/lsst

of C++. The number of lines in the pipelines code as a
function of time is given in Fig. 1.

2.1. Python environment
An important aspect of running a large data process-

ing campaign is to ensure that the software environment
is well defined. We define a base python environment us-
ing conda-forge via a meta package named rubinenv2.
This specifies all the software needed to build and run
the science pipelines software. A Docker container is
built for each software release and the fully-specified ver-
sions of all software are recorded to ensure repeatability.

2.2. Unit Testing and Code Coverage
Unit testing and code coverage are critical compo-

nents of code quality (Jenness et al. 2018). Every
package comes with unit tests written using the stan-
dard unittest module. We run the tests using pytest
(Krekel 2017) and this comes with many advantages in
that all the tests run in the same process and requiring
global parameters to be well understood, test can be run
in parallel in multiple processes, plugins can be enabled
to extend testing and record test coverage, and a test
report can be created giving details of run times and
test failures. Coding standards compliance with PEP 8
(van Rossum 2013) is enforced using GitHub actions and
pre-commit checks. A Jenkins system provides the team
with continuous integration facilities.

3. DATA ACCESS ABSTRACTION
3.1. Butler

Early in the development of the LSST Science
Pipelines software it was decided that the algorithmic
code should be written without knowing where files
came from, what format they were written in, where the
outputs are going to be written or how they are going to
be stored. All that the algorithmic code needs to know
is the relevant data model and the Python type. To
meet these requirements we developed a library called
the Data Butler (see e.g., Jenness et al. 2022; Lust et al.
2023).

The Butler internally is implemented as a registry,
a database keeping track of datasets, and a datas-
tore, a storage system that can map a Butler dataset
to a specific collection of bytes. A datastore is usu-
all a file store (including POSIX file system, S3 ob-
ject stores, or WebDAV) but could also be implemented
as a NoSQL database or a metrics database such as
Sasquatch (Fausti 2023).

2 https://github.com/conda-forge/rubinenv-feedstock
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Table 1. Common dimensions present in the default
dimension universe.

Name Description

instrument Instrument.
band Waveband of interest.
physical_filter Filter used for the exposure.
day_obs The observing day.
group Group identifier.
exposure Individual exposure.
visit Collection of 1 or 2 exposures.
tract Tesselation of the sky.
patch Patch within a tract.

A core concept of the Butler is that every dataset
must be given what we call a “data coordinate.” The
data coordinate locates the dataset in the dimensional
space where dimensions are defined in terms that sci-
entists understand. Some commonly used dimensions
are listed in Table 1. Each dataset is uniquely located
by specifying its dataset type, its run collection, and
its coordinates, with Butler refusing to accept another
dataset that matches all three of those values. The
dataset type defines the relevant dimensions and the as-
sociated Python storage class. The run collection can be
thought of as a folder but does not have to be a folder
within datastore.

As a concrete example, the file from one detector of
an LSSTCam observation taken sometime in 2025 could
have a data coordinate of instrument="LSSTCam",
detector=42, exposure=2025080300100 and be as-
sociated with a raw dataset type. The exposure
record itself implies other information such as the
physical filter and the time of observation. A
deep coadd on a patch of sky would not have
exposure dimensions at all and would instead be
something like instrument="LSSTCam", tract=105,
patch=2, skymap="something", which would tell you
exactly where it is located in the sky since you can cal-
culate it from the tract and patch and skymap.

3.2. Instrument Abstractions: Obs Packages
The Butler and pipeline construction code know noth-

ing about the specifics of a particular instrument. In the
default dimension universe there is an instrument di-
mension that includes a field containing the full name
of a Python Instrument class. This class, which uses a

standard interface, is used by the system to isolate the
instrument-specific from the pipeline-generic. Some of
the responsibilities are:

• Register instrument-specific dimensions such as
detector, physical_filter and the default
visit_system.

• Define the default raw dataset type and the asso-
ciated dimensions.

• Provide configuration defaults for pipeline task
code that is processing data from this instrument.

• Provide a “formatter” class that knows how to
read raw data.

• Define the default curated calibrations known to
this instrument.

By convention we define the instrument class and as-
sociated configuration in obs packages. As an extension
to the base definition of an “instrument“, the LSST Sci-
ence Pipelines define a modified Instrument class that
includes focal plane distortions using the afw package
(see §4.3). There are currently obs packages for:

• LSSTCam (Kahn et al. 2010), LATISS (Ingraham
et al. 2020), and associated Rubin Observatory
test stands and simulators.

• Hyper-SuprimeCam (Miyazaki et al. 2018).

• The Dark Energy Camera (DePoy et al. 2008).

• CFHT’s MegaPrime (Boulade et al. 2003).

Additionally, teams outside the project have devel-
oped obs packages to support Subaru’s Prime Focus
Spectrograph (Wang et al. 2020) and VISTA’s VIRCAM
(Sutherland et al. 2015).

3.3. Metadata Translation
Every instrument uses different metadata standards

but the Butler data model and pipelines require some
form of standardization to determine values such as
the coordinates of an observation, the observaton type,
or the time of observation. To perform that stan-
dard extraction of metadata each supported instru-
ment must provide a metadata translator class using
the astro_metadata_translator infrastructure.3 The
translator classes can understand evolving data mod-
els and allow the standardized metadata to be ex-
tracted for the lifetime of an instrument even if headers

3 https://astro-metadata-translator.lsst.io

https://astro-metadata-translator.lsst.io
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changed. Furthermore, in addition to providing stan-
dardized metadata the package can also provide pro-
grammatic or per-exposure corrections to data headers
prior to calculating the translated metadata. This al-
lows files that were written with incorrect headers to be
recovered.

4. CORE INFRASTRUCTURE LIBRARIES
4.1. Region Handling

geom and sphgeom?
Use ICRS coordinates everywhere. All coordinate

transformations are done within Astropy.

4.2. Time and Hierarchical Data Structures
daf_base.
Use Datetime only to store times in C++ objects. Use

astropy.time for all other time handling, following the
recommendations from Jenness et al. (2016).

PropertySet and PropertyList to allow dict-like
data structures to be passed from Python to C++ and
back again.

4.3. Application Framework
afw – this is called the “Application Framework” in

Axelrod et al. (2010)4

• Image/MaskedImage/Exposure

• Table and Catalogs.

• Detection

• Math

• Camera geometry

• FITS I/O

• WCS: AST library (Berry et al. 2016) backs the
world coordinate system handling.

coadd_utils ?

5. INSTRUMENT SIGNATURE REMOVAL
6. MEASUREMENT SYSTEM

Measurement plugin system.
meas_base and meas_algorithms

4 This document can be downloaded from https://ls.st/
Document-9349

6.1. meas_deblender
6.2. meas_extensions_convolved

6.3. meas_extensions_gaap
6.4. meas_extensions_photometryKron

6.5. meas_extensions_piff
6.6. meas_extensions_psfex

6.7. meas_extensions_scarlet
6.8. meas_extensions_shapeHSM

6.9. meas_extensions_simpleShape
6.10. meas_extensions_trailedSources

6.11. meas_modelfit
6.12. meas_transiNet

7. DIFFERENCE IMAGING
ip_diffim

8. ASTROMETRIC AND PHOTOMETRIC
CALIBRATION

8.1. Astrometric Calibration
meas_astrom gbdes (Bernstein 2022)
Jointcal no longer discussed.

8.2. Photometric Calibration
8.3. fgcmcal

FGCM (Burke et al. 2018)

9. PIPELINES
9.1. Pipeline Support

Tasks and PipelineTask overview.
The Task Python class provides a standard interface

for how to execute an algorithm. The PipelineTask
variant provides stronger guarantees on configuration
and provides a means by which the pipeline execution
framework can determine how to link a task into a
pipeline and how to determine what type of data should
be read from a Butler and what should be written out
to a Butler.

Maybe describe pex_config because it’s not described
anywhere.

9.2. Task library
pipe_tasks drp_tasks

9.3. Pipeline Collections
drp_pipe ap_pipe

10. CATALOG SCHEMAS

https://ls.st/Document-9349
https://ls.st/Document-9349
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Must transform pipeline products from the internal
data model to the public data model defined in Jurić
et al. (2023).

sdm_schemas felis

11. DISPLAY ABSTRACTIONS
Display plugins for:
matplotlib (Hunter 2007), firefly (Roby et al. 2020),

ds9 (Joye & Mandel 2003)

12. DATA ANALYSIS
analysis_tools verify faro

13. VALIDATING THE SCIENCE PIPELINES
We use small, of order of a few gigabyte, datasets

that can be processed as part of continuous integration.
These take of order an hour to process. There are reg-
ular re-processings of standard datasets that can take a
few days to process. For formal data releases there are
additional metrics calculated and a formal test report is
issued.

14. CONCLUSIONS

The LSST Science Pipelines Software has been de-
veloped over 20 years to support the processing of the
Legacy Survey of Space and Time.

This material is based upon work supported in part
by the National Science Foundation through Coopera-
tive Agreement AST-1258333 and Cooperative Support
Agreement AST-1202910 managed by the Association
of Universities for Research in Astronomy (AURA), and
the Department of Energy under Contract No. DE-
AC02-76SF00515 with the SLAC National Accelerator
Laboratory managed by Stanford University. Addi-
tional Rubin Observatory funding comes from private
donations, grants to universities, and in-kind support
from LSSTC Institutional Members.

Facilities: Rubin:Simonyi (LSSTCam), Rubin:1.2m
(LATISS)

Software: ndarray (https://github.com/ndarray/
ndarray), astropy (Astropy Collaboration et al. 2022),
pytest (Krekel 2017), matplotlib (Hunter 2007), galsim
(Rowe et al. 2015), numpy (Harris et al. 2020), gbdes
(Bernstein 2022), Starlink’s (Berry et al. 2022) AST
(Berry et al. 2016), fgcm (https://github.com/erykoff/
fgcm),
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