
Draft version April 3, 2024
Typeset using LATEX twocolumn style in AASTeX62

The LSST Pipelines Software

Tim Jenness1

1Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA

ABSTRACT
The Large Synoptic Survey Telescope Data Management System

Keywords: Astrophysics - Instrumentation and Methods for Astrophysics — methods: data analysis
— methods: miscellaneous

1. INTRODUCTION
The Large Synoptic Survey Telescope (LSST; ?) is an

8.4 m telescope being built on Cerro Pachon in Chile.
The Data Management System (DMS; ?) is designed to
handle the flow of data from the telescope, approaching
20 TB per night, in order to issue alerts and to prepare
annual data releases. A central component of the DMS
is the LSST Science Pipelines software that provides the
algorithms and frameworks required to process the data
and generate the coadds, difference images, and catalogs
to the user community for scientific analysis.

The LSST Science Pipelines software consists of the
building blocks required to construct high performance
pipelines to process the data from LSST. It has been un-
der development since at least 2004 (?) and has evolved
significantly over the years as the project transitioned
from prototyping (?) and entered into formal construc-
tion (?). The software is designed to be usable by other
optical telescopes and this has been demonstrated with
Hyper Suprime Cam (?).

In this paper we provide an overview of the compo-
nents of the software system. This includes a descrip-
tion of the support libraries and data access abstraction,
along with the algorithmic components and the pipeline
task system. We do not include validation of the indi-
vidual algorithms. The other components of the LSST
DMS, such as the workflow system, the Qserv database
(?) and the LSST Science Platform (?), are described
elsewhere.

2. FUNDAMENTALS
The LSST Science Pipelines software is written in

Python with C++ used for high performance algorithms
and for core classes that are usable in both languages.
We recently dropped Python 2 and adopted Python 3
(?), requiring a minimum version of Python 3.6. The
C++ layer can use C++14 features and we use pybind11
to provide the interface from Python to C++. Addi-

tionally, the C++ layer uses ndarray to allow seam-
less passing of C++ arrays to and from Python numpy
arrays. This compatibility with numpy is important in
that it makes LSST data structures available to stan-
dard Python libraries such as Scipy and Astropy (??).

Although all the software uses the lsst namespace,
the code base is split into individual Python products
in the LSST GitHub organization1 that can be installed
independently and which declare their own dependen-
cies. These dependencies are managed using the EUPS
system (??). Each product is built using the SCons sys-
tem (?) with LSST-specific extensions provided in the
sconsUtils package enforcing standard build rules.

For logging we use Log4CXX wrapped in the
lsst.log package to make it look more like standard
Python logging whilst also supporting deferred string
formatting such that log messages are only formed if
the log message level is sufficient for the message to be
logged. Finally, we also provide some LSST-specific ex-
ceptions that can be thrown from C++ code and caught
in Python.

As of April 2018, the Science Pipelines software is ap-
proximately 290,000 lines of Python and 225,000 lines
of C++.2

2.1. Unit Testing and Code Coverage
Unit testing and code coverage are critical components

of code quality (?). Every package comes with unit tests
written using the standard unittest module. We run
the tests using pytest (?) and this comes with many
advantages in that all the tests run in the same process

1 https://github.com/lsst
2 Line counts include comments but not blank lines. Python

interfaces are implemented using pybind11 and that is counted
as C++ code. For the purposes of this count Science pipelines
software is defined as the lsst_distrib metapackage and does
not include code from third party packages.

http://orcid.org/0000-0001-5982-167X
https://github.com/lsst


2 LSST Data Management Pipeline Developers

and requiring global parameters to be well understood,
test can be run in parallel in multiple processes, plugins
can be enabled to extend testing, and a test report can
be created giving details of run times and test failures.
Coding standards compliance with PEP 8 (?) and code
coverage are enabled using pytest plugins, and we also
check for leaked file descriptors during tests.

3. DATA ACCESS ABSTRACTION
3.1. Butler

3.2. Instrument Abstractions: Obs Packages
4. ASTRONOMY FRAME WORK: AFW

5. MEASUREMENT SYSTEM
6. JOINT CALIBRATION
7. PIPELINE SUPPORT
7.1. Tasks and SuperTask

8. CONCLUSIONS

This material is based upon work supported in part by
the National Science Foundation through Cooperative
Agreement 1258333 managed by the Association of Uni-
versities for Research in Astronomy (AURA), and the
Department of Energy under Contract No. DE-AC02-
76SF00515 with the SLAC National Accelerator Labo-
ratory. Additional LSST funding comes from private
donations, grants to universities, and in-kind support
from LSSTC Institutional Members.

Facility: LSST


