DRAFT VERSION JuLy 31, 2025
Typeset using INTEX twocolumn style in AASTeX7

https://doi.org/10.71929 /rubin /2570545

The LSST Science Pipelines Software: Optical Survey Pipeline Reduction and Analysis Environment

RUBIN OBSERVATORY SCIENCE PIPELINES DEVELOPERS!

THE RUBIN OBSERVATORY SCIENCE PIPELINES TEAM

1 Vera C. Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA

ABSTRACT

The NSF-DOE Vera C. Rubin Observatory will produce the Legacy Survey of Space and Time
(LSST), producing 11 data releases over the ten-year survey. The LSST Science Pipelines Software,
the Optical Survey Pipeline Reduction and Analysis Environment (OSPRAE), will be used to create
these data releases and to perform the nightly alert production. This paper provides an overview of
the LSST Science Pipelines Software, describing the components and how they are combined to form

pipelines.

Keywords: Astrophysics - Instrumentation and Methods for Astrophysics — methods: data analysis

— methods: miscellaneous

1. INTRODUCTION

The NSF-DOE Vera C. Rubin Observatory will be
performing the 10-year Legacy Survey of Space and
Time (LSST; Z. Ivezi¢ et al. 2019) starting in 2025. Ru-
bin Observatory is located on Cerro Pachon in Chile and
consists of the 8.4m Simonyi Survey Telescope (S. J.
Thomas et al. 2022) with the 3.2-gigapixel LSSTCam
survey camera (A. Roodman et al. 2024) performing
the main survey and the Rubin Auxiliary Telescope (P.
Ingraham et al. 2020) providing supplementary atmo-
spheric calibration data. The Data Management System
(DMS; W. O’Mullane et al. 2022) is designed to handle
the flow of data from the telescope, approaching 20 TB
per night, in order to issue alerts and to prepare annual
data releases. A central component of the DMS is the
LSST Science Pipelines software that provides the al-
gorithms and frameworks required to process the data
from the LSST and generate the coadds, difference im-
ages, and catalogs to the user community for scientific
analysis.

The LSST Science Pipelines software consists of the
building blocks and pipeline infrastructure required to
construct high performance pipelines to process the data
from LSST. It has been under development since at least
2004 (T. Axelrod et al. 2004) and has evolved signifi-
cantly over the years as the project transitioned from
prototyping (T. Axelrod et al. 2010) and entered into
formal construction (M. Juri¢ et al. 2017). The soft-

ware is designed to be usable by other optical telescopes
and this has been demonstrated with Hyper Suprime
Cam on the Subaru Telescope in Hawaii (J. Bosch et al.
2018) and also with data from the Dark Energy Cam-
era (DECam), the VISTA infrared camera (VIRCAM),
the Wide Field Survey Telescope (WFST; M. Cai et al.
2025), and the Gravitational-wave Optical Transient
Observer (GOTO; J. R. Mullaney et al. 2021). It was
used to make the first public data release from Rubin
Observatory, the LSST Data Preview 1 (Vera C. Rubin
Observatory 2025; NSF-DOE Vera C. Rubin Observa-
tory 2025), which consisted of data from the LSST Com-
missioning Camera (LSSTComCam; SLAC National
Accelerator Laboratory & NSF-DOE Vera C. Rubin Ob-
servatory 2024; B. Stalder et al. 2022).

In this paper we provide an overview of the software
system, dividing it into four rough tiers:

e low-level utility code and our data access, config-
uration, and execution frameworks, and our core
algorithmic primitives are described in sections 2,
3, and 4, respectively;

e reusable mid-level algorithmic components are de-
scribed in 5;

o high-level tasks and pipelines are described in 6,
along with some of the details of the algorithms
specific to them;

 analysis and validation tooling is described in 7.

https://doi.org/10.71929/rubin/2570545

2 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

There are no sharp boundaries between these tiers; they
are better considered to be a loose organizational aid
than any kind of formal classification. We do not in-
clude details of the science validation of the individual
algorithms, and do not attempt to cover componets of
the system in uniform detail; instead we focus attention
on those that are unique or novel or not well described
elsewhere. The other components of the LSST DMS,
such as the workflow system (M. Gower et al. 2022; E.
Karavakis et al. 2024), the Qserv database (D. L. Wang
et al. 2011; F. Mueller et al. 2023) and the Rubin Sci-
ence Platform (M. Jurié¢ et al. 2019; W. O’Mullane et al.
2024), are not covered in this paper.

2. FUNDAMENTALS

The LSST Science Pipelines software is written in
Python with C++ used for high-performance algorithms
and for core classes that are usable in both languages.
We use Python 3 (having ported from python 2, T.
Jenness 2020, currently with a minimum version of
Python 3.12), and the C++ layer can use C++17 fea-
tures with pybindl1l being used to provide the inter-
face from Python to C++. Additionally, the C++ layer
uses ndarray to allow seamless passing of C++ arrays
to and from Python numpy arrays. This compatibility
with numpy is important in that it makes LSST data
structures available to standard Python libraries such
as Scipy and Astropy (T. Jenness et al. 2016; Astropy
Collaboration et al. 2018).

Although all the software uses the 1sst namespace,
the code base is split into individual Python products in
the LSST GitHub organization® that can be installed in-
dependently and which declare their own dependencies.
These dependencies are managed using the “Extended
Unix Product System” (EUPS; N. Padmanabhan et al.
2015; T. Jenness et al. 2018) where most of the products
are built using the SCons system (S. Knight 2005) with
LSST-specific extensions provided in the sconsUtils
package enforcing standard build rules and creating the
necessary Python package metadata files.

For logging we always use standard Python logging
with an additional VERBOSE log level between INFO and
DEBUG to provide additional non-debugging detail that
can be enabled during batch processing. This verbose
logging is used for periodic logging where long-lived
analysis tasks are required to issue a log message ev-
ery 10 minutes to indicate to the batch system that
they are still alive and actively performing work. For
logging from C++ we use LogdCXX wrapped in the
1lsst.log package to make it look more like standard

2 https://github.com/lsst

500000 T T
[== Python Code b
i Python Comment
F C++ Code 4
400000 [— C++ Comment 7]
(]
'8 L J
O 300000 -]
u—
o
" L]
@ 200000 -
£ []
- L
100000 |- ~ N
R R S BRI SRR R R R
2014 2016 2018 2020 2022 2024

Date

Figure 1. The number of lines of code comprising the LSST
Science Pipelines software as a function of year. Line counts
include comments but not blank lines. Python interfaces are
implemented using pybind11l and that is counted as C++
code. For the purposes of this count Science pipelines soft-
ware is defined as the 1sst_distrib metapackage and does
not include code from third party packages or code from the
solar system pipeline.

Python logging, whilst also supporting deferred string
formatting such that log messages are only formed if
the log message level is sufficient for the message to
be logged. These C++ log messages are forwarded to
Python rather than being issued from an independent
logging stream. Finally, we also provide some LSST-
specific exceptions that can be thrown from C++ code
and caught in Python.

As of April 2025, the Science Pipelines software is ap-
proximately 700,000 lines of Python and 225,000 lines
of C++. The number of lines in the pipelines code as a
function of time is given in Fig. 1.

2.1. Python environment

An important aspect of running a large data process-
ing campaign is to ensure that the software environment
is well defined. We define a base python environment us-
ing conda-forge via a meta package named rubin-env®.
This specifies all the software needed to build and run
the science pipelines software. A Docker container is
built for each software release and the fully-specified ver-
sions of all software are recorded to ensure repeatability.

2.2. Unit Testing and Code Coverage

Unit testing and code coverage are critical components
of code quality (T. Jenness et al. 2018). Every pack-
age comes with unit tests written using the standard
unittest module. We run the tests using pytest (H.
Krekel 2017) and this comes with many advantages in

3 https://github.com/conda-forge/rubinenv-feedstock

https://github.com/lsst
https://github.com/conda-forge/rubinenv-feedstock

THE LSST SCIENCE PIPELINES 3

that all the tests run in the same process and requiring
global parameters to be well understood, tests can be
run in parallel in multiple processes, plugins can be en-
abled to extend testing and record test coverage, and a
test report can be created giving details of run times and
test failures. Coding standards compliance with PEP 8
(G. van Rossum 2013) is enforced using GitHub Actions,
the ruff package, and pre-commit checks.

A Jenkins system provides the team with continu-
ous integration across multiple packages. This includes
longer tests (up to a few hours) in which we run com-
plete pipelines on small precursor datasets (typically a
few GB) fetched via git-1fs.

3. DATA ACCESS AND EXECUTION
ABSTRACTIONS

The algorithmic components of the LSST Science
Pipelines are built on a suite of packages that together
form a powerful data access and execution framework
(pex_config, resources, daf_butler, pipe_base,
ctrl_mpexec, and ctrl_bps). Unlike most of the rest
of the codebase, these packages can be individually in-
stalled with pip as well as EUPS and can be used on
their own.

3.1. Butler

Early in the development of the LSST Science
Pipelines software it was decided that the algorithmic
code should be written without knowing where files
came from, what format they were written in, where the
outputs are going to be written or how they are going to
be stored. All that the algorithmic code needs to know
is the relevant data model and the Python type. To
meet these requirements we developed a library called
the Data Butler (see e.g., T. Jenness et al. 2022; N. B.
Lust et al. 2023).

The Butler internally is implemented as a registry, a
database keeping track of datasets, and a datastore, a
storage system that can map a Butler dataset to a spe-
cific collection of bytes. A datastore is usually a file
store (including POSIX file system, S3 object stores, or
WebDAV) but it is also possible to store metrics directly
into the Sasquatch metrics service (A. Fausti 2023; A.
Fausti Neto et al. 2024).

A core concept of the Butler is that every dataset
must be given what we call a “data coordinate.” The
data coordinate locates the dataset in the dimensional
space where dimensions are defined in terms that scien-
tists understand. Some commonly used dimensions are
listed in Table 1. Each dataset is uniquely located by
specifying its dataset type, its run collection, and its co-
ordinates, with Butler refusing to accept another dataset

Table 1. Common dimensions present in the default
dimension universe.

Name Description
instrument Instrument.
band Waveband of interest.

physical_filter Filter used for the exposure.

day_obs The observing day.

group Group identifier.

exposure Individual exposure.

visit Collection of 1 or 2 exposures.
tract Tesselation of the sky.

patch Patch within a tract.

that matches all three of those values. The dataset type
defines the relevant dimensions (such as whether this is
referring to observations or a sky map) and the asso-
ciated Python type representing the dataset. The run
collection can be thought of as a folder grouping datasets
created by the same batch operation, but does not have
to be a folder within a file system.

As a concrete example, the file from one detector of
an LSSTCam observation taken sometime in 2025 could
have a data coordinate of instrument="LSSTCam",
detector=42, exposure=2025080300100 and be
associated with a raw dataset type. The exposure
record itself implies other information such as the
physical filter and the time of observation. A deep
coadd on a patch of sky would not have exposure
dimensions at all and would instead be something
like instrument="LSSTCam", tract=105, patch=2,
band="r", skymap="something", which would tell
you exactly where it is located in the sky and in what
waveband since you can calculate it from the tract,
patch, band and skymap.

3.2. Pipelines and Tasks

The data dimensions system also plays a fundamental
role in how the LSST processing pipelines are assem-
bled and run; high-level pieces of algorithmic code called
PipelineTasks declare the dimensions of their units of
work (“quanta”), their inputs, and their outputs, allow-
ing a directed acyclic graph (a "quantum graph”) de-
scribing the processing to be assembled from a YAML
declaration of the tasks to be run, their configuration,
and a butler database query. Quantum graphs can range
in size from a few tens of quanta (e.g., for the nightly
processing performed on a single detector image) to mil-

4 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

lions (for a piece of the yearly data release pipelines),
and serve as the common interface for multiple execu-
tion systems, including the low-latency nightly Prompt
Processing framework and the Batch Processing System
(BPS; M. Gower et al. 2022), which adapts quantum
graphs for execution at scale by third-party workflow
management systems like HT Condor (HTCondor Team
2024), Parsl (Y. Babuji et al. 2019), and PanDA (E.
Karavakis et al. 2024).

TODO: examples of pipeline YAML, pipeline graph
diagrams

Algorithmic code below the PipelineTask level is
often subdivided into multiple “subtasks” that (like
PipelineTask itself) inherit from the base Task class,
which provides easy access to hierarchical logging, meta-
data, and configuration.

3.3. Pipeline Visualization

Visualizing pipeline execution is crucial for under-
standing task dependencies, debugging, optimizing
workflows, and ensuring correct data flow within the
LSST Science Pipelines. To support this, pipetask
build provides several options for visualizing the
pipeline graph—a simplified directed acyclic graph that
shows how tasks relate to dataset types, without includ-
ing data IDs.

A text-based view can be generated using pipetask
build --show pipeline-graph, which outputs an
ASCII-style diagram. This format is especially useful
for quick inspection or when working in a terminal-
only environment. For graphical visualization, the
—--pipeline-dot and --pipeline-mermaid options ex-
port the pipeline graph in Graphviz DOT* and Mer-
maid® formats, respectively. The Mermaid format is
particularly well-suited for sharing in accessible, web-
based contexts.

Unlike DOT files, which typically require rendering
with external tools like Graphviz’s dot, Mermaid defini-
tions can be directly rendered in Markdown-based plat-
forms such as GitHub, GitLab, some Jupyter environ-
ments, and even Slack with the appropriate plugin. This
makes Mermaid an effective format for generating inter-
active, easily shareable pipeline graphs that can be di-
rectly embedded in documentation, notebooks, or code
review tools.

Figure 2 shows a visualization of a subset of two tasks
from the LSSTComCam/DRP-v2.yaml pipeline using the
Mermaid format. The diagram shows the relationships
between tasks and their input and output datasets as

4 https://www.graphviz.org
5 https://mermaid.js.org

well as the sequence in which the tasks are expected to
run. Such visualizations can help uncover misconfigu-
rations, missing inputs, or unexpected data dependen-
cies that might otherwise result in issues such as empty
QuantumGraphs or failed pipeline execution.

3.4. Configuration

Pex Config is the foundational configuration system
for the LSST Rubin Observatory’s ambitious science
pipelines. It’s far more than a simple parameter parser;
it’s a framework that mediates between diverse con-
figuration sources and the complex software that pro-
cesses astronomical data. At its core, Pex Config func-
tions as an intermediate representation, decoupling the
pipelines from the specifics of configuration file formats
(like YAML, JSON) and providing a unified, Python-
native interface to all configurable parameters. This in-
termediate representation, resembling a Domain Specific
Language embedded within Python, also allows leverag-
ing the full power of a programming language for parsing
or setting configuration values. An example of this can
be seen in the following code block which shows a frag-
ment used to configure one of the shape measurement
routines. This abstraction is critical for maintainabil-
ity, allowing the underlying file formats and or execu-
tion systems to evolve without impacting the pipeline
code. It also provides a mechanism to deprecate con-
figurables which will change in future versions of the
software stack, allowing users an easy migration path.

import os.path
from lsst.utils import getPackageDir

try:
location =
getPackageDir ("meas_extensions_shapeHSM")
path = os.path.join(, "config", "enable.py")
config.load(path)
plugins = config.plugins
plugin =
plugins["ext_shapeHSM_HsmShapeRegauss"]
plugin.deblendNChild = "deblend_nChild"
Enable debiased moments
config.plugins.names |=
["ext_shapeHSM_HsmPsfMomentsDebiased"]
except LookupError as e:
print ("Cannot enable shapeHSM (%s):
HSM shape measurements" % (e,))

disabling

Listing 1. Code configuration in python

The design of Pex Config centers around the con-
cepts of “Fields” and “Config” objects. Fields repre-
sent individual configurable values — things like expo-
sure times, image quality thresholds, or database con-
nection strings. Each Field is strongly typed, supporting
a variety of data types (such as integers, floats, strings,
booleans, and lists). Config objects, on the other hand,

https://www.graphviz.org
https://mermaid.js.org

THE LSST SCIENCE PIPELINES 5

Figure 2. Example pipeline visualization of four selected tasks from the LSSTComCam/DRP-v2.yaml pipeline in the Mermaid
format. The diagram illustrates the flow of datasets between tasks, with dashed lines indicating prerequisite inputs. This
visualization helps validate task dependencies and the expected sequence of execution.

are containers that group related Fields together, creat-
ing logical units of configuration. One of the highlights
of Pex Config is its composability. Config objects can
be nested within other Config objects using a special
“ConfigField,” allowing for the creation of complex, hi-
erarchical configuration trees that mirror the structure
of the pipelines themselves. This allows for modularity
and reuse of configuration components across different
parts of the system.

A strength of Pex Config is its flexible application
of configuration values. Values can be set at multiple
stages: via command-line arguments, loaded from con-
figuration files, or defined directly within the pipeline
code. Importantly, these stages are applied progres-
sively, with later stages overriding earlier ones. This
allows for a powerful combination of default settings,
user-defined customizations, and dynamic adjustments.
Mechanisms also exist to apply values to all instances of
a particular Config object within a tree, simplifying the
management of shared parameters and ensuring consis-
tency.

Beyond runtime configuration, Pex Config is deeply
concerned with data provenance and reproducibility. It
provides mechanisms for persisting and restoring config-
uration values, allowing for complete tracking of pipeline
parameters used in a particular data processing run.
Crucially, it also maintains a history of each Field’s
value, recording when and where it was set — whether via
the command line, a configuration file, or programmati-
cally. This detailed history is invaluable for debugging,
auditing, and ensuring the reproducibility of scientific
results. The system also incorporates robust validation
mechanisms, enabling checks on individual Fields and
groups of values before they are used by the pipelines,
preventing errors and ensuring data quality. Validation

can range from simple type checking, ensuring values fall
within acceptable ranges or specific patters, to complex
custom functions that enforce specific constraints.

Finally, Pex Config is designed with documentation in
mind. All Fields and Config objects can be richly doc-
umented using documentation strings and attributes.
This documentation structure is not only readable by
humans but can also be parsed by automated tools
to generate comprehensive documentation pages, elim-
inating the need for manual documentation creation.
This ensures that the configuration system is well-
documented and easy to understand, even for new de-
velopers. The system is flexible enough that it has been
adopted by the DRAGONS software (K. Labrie et al.
2023).

3.5. Instrument Abstractions: Obs Packages

The Butler and pipeline construction code know noth-
ing about the specifics of a particular instrument. In the
default dimension universe there is an instrument di-
mension that includes a field containing the full name
of a Python Instrument class. This class, which uses a
standard interface, is used by the system to isolate the
instrument-specific from the pipeline-generic. Some of
the responsibilities are:

e Register instrument-specific dimensions such as
detector, physical_filter and the default
visit_system.

e Define the default raw dataset type and the asso-
ciated dimensions.

e Provide configuration defaults for pipeline task
code that is processing data from this instrument.

e Provide a “formatter” class that knows how to
read raw data.

6 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

e Define the default curated calibrations known to
this instrument.

The Instrument interface is defined in two levels: the
minimal interface in the pipe_base package defines ev-
erything needed to use the butler and execution system,
while a more complete subclass in obs_base provides
considerable additional functionality but is not in the
minimal, pip-installable suite.

By convention we define the instrument class and as-
sociated configuration in obs packages. There are cur-
rently project-supported obs packages for:

e LSSTCam (A. Roodman et al. 2024; T. Lange
et al. 2024; Y. Utsumi et al. 2024; S. M. Kahn
et al. 2010), LATISS (P. Ingraham et al. 2020),
and associated Rubin Observatory test stands and
simulators.

¢ Hyper-SuprimeCam on the Subaru telescope (S.
Miyazaki et al. 2018).

e The Dark Energy Camera on the CTIO Blanco
telescope (B. Flaugher et al. 2015; D. L. DePoy
et al. 2008).

o CFHT’s MegaPrime (O. Boulade et al. 2003).

Additionally, teams outside the project have devel-
oped obs packages to support Subaru’s Prime Focus
Spectrograph (S.-Y. Wang et al. 2020), VISTA’s VIR~
CAM (W. Sutherland et al. 2015), the Wide Field Sur-
vey Telescope (WFST; M. Cai et al. 2025), and the
Gravitational-wave Optical Transient Observer (GOTO;
J. R. Mullaney et al. 2021).

3.6. Metadata Translation

Every instrument uses different metadata standards
but the Butler data model and pipelines require some
form of standardization to determine values such as
the coordinates of an observation, the observation type,
or the time of observation. To perform that stan-
dard extraction of metadata each supported instru-
ment must provide a metadata translator class using
the astro_metadata_translator infrastructure.® The
translator classes can understand evolving data mod-
els and allow the standardized metadata to be ex-
tracted for the lifetime of an instrument even if headers
changed. Furthermore, in addition to providing stan-
dardized metadata the package can also provide pro-
grammatic or per-exposure corrections to data headers

6 https://astro-metadata-translator.lsst.io

prior to calculating the translated metadata. This al-
lows files that were written with incorrect headers to be
recovered during file ingestion.

4. CORE ALGORITHMIC PRIMITIVES AND DATA
STRUCTURES

The high-level algorithms in the LSST Science
Pipelines are largely built from algorithmic primitives
and data structures implemented in the afw package.
afw is a large, complex, C++-heavy suite of multiple
libraries that sometimes suffer from historical idiosyn-
crasies, but are nevertheless extremely powerful and well
optimized. These include (but are not limited to):

o afw.geom holds our high-level geometry primi-
tives. This includes composable coordinate trans-
forms and world coordinate systems (WCS). It also
includes SpanSet, a run-length encoding (RLE)
description of a set of pixels in a 2-d image, a sim-
ple Polygon class, and routines for working with
various ellipse parameterizations.

e afw.math includes convolution, resampling,
general-purpose interpolation, statistics, and
least-squares fitting algorithms.

o afw.detection contains threshold-based detec-
tion on images and point-spread function (PSF)
model interfaces. This includes the Footprint
class, which combines a SpanSet with a list of
peaks to represent either a single source detection
or a group of blended sources.

o afw.image centers around the Exposure class,
which combines an image (Image), bitmask
(Mask), and variance image with the many objects
used to astrophysically characterize an observation
or coadd (PSF, WCS, aperture corrections, etc).

o afw.table holds data structures for tabular data,
with both row- and column-based views. The
afw.table.io package defines a framework for
persisting arbitrary objects to a series of FITS bi-
nary table HDUs, which is used in the on-disk form
of the Exposure class.

e afw.cameraGeom provides a hierarchical descrip-
tion of large-format photometric cameras (like
LSSTCam, HSC, or DECam), including optical
distortions, focal plane layouts, and amplifier re-
gions.

Most of the algorithms and data structures in afw
are implemented there directly, and often represent
evolutions of concepts first developed in the SDSS

https://astro-metadata-translator.lsst.io

THE LSST SCIENCE PIPELINES 7

Photo pipeline or the Pan-STARRS Image Processing
Pipelines. Others delegate to third-party libraries, par-
ticularly Eigen (linear algebra), the Gnu Scientific Li-
brary (interpolation, random numbers), Boost (image
iterators and geometry), CFITSIO (image and table
I/O) and Starlink AST (coordinate systems and trans-
forms; D. S. Berry et al. 2016).

Even lower-level data structures are defined in a hand-
ful of packages just below afw. The sphgeom package is
used for spherical geometry calculations, sky-based re-
gions, and hierarchical sky pixelization schemes, while
geom provides simple 2-d Euclidean Point, Extent, and
Box types in both integer- and floating-point variants.
geom also includes linear transforms and (for historical
reasons) its own angle-manipulation and sky coordinate
type.

C++ mapping types (with Python bindings) and
date/time objects are defined in daf_base. The
DateTime package is used in our C++ data structures
mostly to represent TAI times. The PropertySet rep-
resents a hierarchical key/value data structure whereas
PropertyList is a flat data structure that is used to
represent a FITS header and supports multi-valued keys
and key comments.

Another small set of core packages sits just above afw:

o skymap defines interfaces and a few implementa-
tions of our system for mapping the sky onto a set
of slightly-overlapping image-friendly projections
and tiles for coaddition. Each distinct projection
in a skymap is called a tract, and each tract is
further divided into multiple patches.

e shapelet includes optimizated evaluation of
Gauss-Hermite and Gauss-Laguerre functions and
their derivatives.

A substantial fraction of our core packages predate
the now-ubiquitous Astropy package, and in some cases
we now prefer to use Astropy types in most new code
(date/time representations and tables in particular) and
especially public interfaces, following the recommenda-
tions from T. Jenness et al. (2016). Fully retiring core
libraries that have Astropy counterparts is at best a
long-term project, however, due to our continued need
for these objects in considerable amounts of C++ that
has no equivalent in Astropy (or anywhere else).

5. KEY ALGORITHMIC COMPONENTS

Most of the key algorithms we have implemented for
processing Rubin data are used in multiple pipelines,
and in many cases an algorithmic component is used
multiple times within a single pipeline. For the most

part, these reusable algorithms are implemented as reg-
ular Task objects, and these are combined in higher-level
PipelineTasks discussed later in 6. In other cases, the
algorithm is inseparable from from its I/O, and is im-
plemented directly as a PipelineTask. This section in-
cludes examples of both.

5.1. Instrument Signature Removal

Raw images from charge-coupled devices (CCDs) con-
tain instrumental effects, such as dark currents, clock-
ing artifacts, or crosstalk between neighboring ampli-
fiers, that can be removed in the data processing. In
the Rubin pipeline, this step is called Instrument Signa-
ture Removal (ISR) and is the first processing applied
to a raw CCD exposure. The package performing the
ISR on an exposure, called ip_isr, is detailed below
in §5.1.1: it is a critical package for Data Release Pro-
duction (DRP) pipelines used to process LSST images
and requires calibration products produced and verified
by cp_pipe and cp_verify respectively as described in
§6.5. For further information about the life cycle of a
calibration product and the procedures it entails, see C.
Waters & E. Rykoff (2025). A general overview of the
ISR steps (based on the model in Fig. 3) and calibra-
tion products production (including generation, verifi-
cation, certification, approval, and distribution) is given
in A. A. Plazas Malagén et al. (2025).

We note that we focus here on our approach to per-
forming ISR on data from LSST cameras only (LSST-
Cam, LSSTComCam, and LATISS), although we also
provide calibration pipelines for other cameras such as
DECam and HSC using a different ISR approach.

5.1.1. ISR package

Exposures from LSST cameras are affected by instru-
mental effects, ranging from well-known CCD effects like
dark currents or bias levels to effects more recently char-
acterized like tree-rings (see H. Y. Park et al. (2017);
H. Park et al. (2020); J. H. Esteves et al. (2023); Y.
Okura et al. (2015, 2016) for more details on tree rings in
LSSTCam and their impact on science) or the Brighter-
Fatter effect as discussed in A. Broughton et al. (2024).
Correcting for these effects requires specific calibrations,
which we refer to as calibration products. In LSST cam-
eras, calibration products typically are a combined bias,
a combined dark, a Photon Transfer Curve (PTC), a
crosstalk matrix, a list of defects, and a look-up table
of non-linearity parameters. The meaning of these cal-
ibration products and the details on the Rubin Obser-
vatory’s ISR and calibration approach can be found in
A. A. Plazas Malagén et al. (2025) and P. Fagrelius &
E. Rykoff (2025).

8 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

Detector Readout Board (REB) with Analog

F : Signal Processing Integrated Circuit
Brighter/

Fatter

(ASPIC)

: Differential }
i non-
: Mid signal ; i linearity !

g
8
o
5 e
3 Amplifier
% Segment

{ Dark
 current |

v ¢ ; - Analog-
Serial Transfer - ASPIC Dual- Bias Digital
Sora Register [Cabling [~ b "amp Slope [~ Injection [o) Ve ey
~ (10-20k) ADC)
Electronic/Gn-chip Gaingz (V) TEZm Ay #oo

gain gy(-5 wV/el) (ectable REB temp
- 4 " dependent?)

1

Charge i}

2D Bias | i

Transfer i} Structure + i H —
Inefficiency :: Bias “Wave” ! R Ex%l:‘lal
(CTI) Trap : Low signal i Crosstalk |
,,,,,,,,,,,,,,,,, Non- | | (Across | Overallgaing (e7ADU)
injected linearity i midline)
22772 L.
offset L

(-10k to
10k ADU)

Figure 3. Schematic of the instrument model for detector
effects in LSST cameras which isrTaskLSST is based on at
the time of publication. More details about the model can
be found in P. Fagrelius & E. Rykoff (2025) and A. A. Plazas
Malagén et al. (2025).

The ip_isr package’ contains the codes needed to
remove instrument signatures in exposures from LSST
cameras and to produce calibration products. To in-
form our ISR approach, we first designed a model of the
instrument, displayed in Fig. 3, based on our knowl-
edge of the hardware and electronics. This model states
the order in which the different known instrumental ef-
fects happen, from a photon hitting the CCD to the out-
put ADC unit (ADU) signal. In turn, isrTaskLSST in
ip_isr sequentially applies corrections of these effects
in the opposite order as their effects occur in the model,
as we are attempting to remove the impact of those ef-
fects on the image. Such corrections are typically done
by calling other Tasks (e.g. overscan, crosstalk, etc.)
also implemented in ip_isr. Not shown in Fig. 3 is a
final amplifier offset (amp-offset) correction step. The
amp-offset correction is applied to the output exposure
at the end of isrTaskLSST to remove discontinuities in
the background sky level across amplifier boundaries.
For more details on the amp-offset correction, see Ap-
pendix §A.

Overall, isrTaskLSST takes a raw CCD exposure, and
calibration products if available, and outputs a Struct
containing the output exposure, the post_isr_image
output exposure as well as its binned version for easier
display, the exposure without interpolation and statis-
tics on the output exposure. IsrTaskLSSTConfig de-
fines the configurations used in this Task, with them set
by default to their expected values to perform ISR on
a typical LSSTCam exposure. Configuration parame-
ters starting with do will typically correspond to an ISR

7 https://github.com/lsst/ip__isr

step. These steps are turned on or off in the pipelines
when producing the different calibration products. We
have also developed isrMockLSST which simulates a raw
exposure and corresponding calibration products and is
used to test isrTaskLSST.

5.2. Background Subtraction
5.3. Source Detection

In the LSST Science Pipelines, detection refers specif-
ically to the process of finding above-threshold regions
in images and one or more peaks within them (i.e.
Footprints, as described in 4). Before this threshold-
ing, we convolve each image with an approximation of
its PSF model, as this is (approximately) optimal for de-
tecting isolated point sources (J. Bosch et al. 2018). Af-
ter detection, Footprints with multiple peaks are gen-
erally deblended (5.4) before being measured (5.5). Our
detection algorithms assume the image has already been
background-subtracted.

All of our detection tasks are implemented in the
meas_algorithms package.

5.3.1. SourceDetectionTask

SourceDetectionTask convolves the image with a
Gaussian approximation to the exposure PSF and de-
tects Footprints above a configurable threshold in ei-
ther signal-to-noise or absolute flux level. It can option-
ally detect negative deviations as well as positive (which
is useful when operating on difference images).

A serious challenge for this algorithm in deep or
otherwise crowded fields is that noise peaks or below-
threshold sources can be pushed above the detection
threshold when they land in the wings of brighter neigh-
bors. To reduce the number of spurious peaks due to
this effect, SourceDetectionTask can optionally per-
form a temporary small-scale background subtraction
before looking for peaks (but after finding the above-
threshold regions); while the spline and Chebyshev mod-
els are not good models for the wings of large objects,
they are often better than nothing.

5.3.2. DynamicDetectionTask

The DynamicDetectionTask is a specialized version
of SourceDetectionTask that adjusts detection thresh-
olds based on the local background and noise. This
task was initially developed to address detection ef-
ficiency issues noted in HSC data, though to be re-
lated to correlations in the noise due to warping. First,
DynamicDetectionTask detects sources using a lower
detection threshold than normal. In so doing, we iden-
tify regions of the sky which are unlikely to contain real
source flux. Next, a configurable number of sky ob-

https://github.com/lsst/ip_isr

THE LSST SCIENCE PIPELINES 9

jects (see refsec:sky-objects) are placed in these sky re-
gions (1000 by default), and the PSF flux and standard
deviation for each of these measurements is calculated.
Using this information, we set the detection threshold
such that the standard deviation of the measurements
matches the median estimated error.

5.3.3. MaskStreaksTask

Instead looking for astrophysical sources like our other
detection tasks, MaskStreaksTask is responsible for
identifying and masking pixels affected by streaks (pri-
marily artificial satellites). It searches for linear features
with a Canny filter and the Kernel-Based Hough Trans-
form (L. A. F. Fernandes & M. M. Oliveira 2008), and
operates most effectively on difference images. The algo-
rithm is described in more detail in C. Saunders (2021),
which focuses on its usage on differences between PSF-
matched warps and a PSF-matched coadd, as described
in 6.2. This task is also used in traditional difference im-
ages, i.e. those formed by subtracting a template coadd
from a science images, as described in 6.3.

5.4. Deblending

Deblending has become the standard astronomical
term for dealing with images where multiple distinct
astrophysical sources overlap. In the LSST Science
Pipelines, it specifically means assigning different frac-
tions of the flux of all of the pixels in a Footprint to
each of the peaks in that Footprint, which are then
each considered a “child” source. This fractional flux as-
signment is very different from creating a “segmentation
map” that fully assigns each pixel to each child source, as
in e.g. Source Extractor (E. Bertin & S. Arnouts 1996).
HeavyFootprint (an extension of Footprint that adds
a flattened array of pixel values) is used to pass the per-
pixel fluxes to downstream algorithms.

Deblending in the science pipelines is performed differ-
ently for single-band (visit) image processing vs. multi-
band (coadd) image processing. This section gives a
basic description of each algorithm.

5.4.1. Single-band Deblending

Deblending on single-band images (ie. visit) is per-
formed using the meas_deblender package and is based
on the deblender used in SDSS (citation needed), with
a few differences that will be discussed shortly. Similar
to the SDSS deblender, the LSST deblender creates a
template for each source in a blend using a very sim-
ple (yet computationally efficient) model for each peak
position in a parent Footprint. Once a template has
been created for each peak in the blend, the deblender
combines all of the source templates into a single blend
model by summing their values in each pixel. For each

pixel in a source template, the ratio of the source tem-
plate value to the total blend model is calculated and
used to weight the pixel value from the image to create
a model for each source. The source models are thus
flux conserving in that adding them together will yield
the original image except for pixels that do not appear
in any of the individual templates. A cleanup algorithm
is then run to allocate the remaining pixels to one of the
sources in the blend based on a set of criteria including
distance to the center, brighness of the nearest sources,
etc.

5.4.2. Deblender Template Generation

The main ansatz of the SDSS deblending algorithm is
that the flux from stars and galaxies in a ground based
telescope is nearly 180 degree symmetric. Figure 4 illus-
trates how a 1D slice through the center of two blended
sources can exploit this symmetry by setting the pix-
els on opposite sides of the (integer) center pixel to the
minimum value of both pixels. In other words, for sim-
ple blends of only two sources the deblender can use
the flux on the non-blended side to constrain the value
of the flux on the blended side. Despite the fact that
stars (PSFs) and galaxies are not exactly symmetric, es-
pecially since their position is not exactly centered in
the center of a single pixel, this algorithm works quite
well for generating templates in simple blends that very
nearly approximate each source when redistributing flux
from the image.

For sources with low SNR the algorithm fails due to
noise in the image, generating galaxy templates that are
typically very jagged and unphysical. To combat this,
for each peak in the parent Footprint the deblender
first attempts to fit the flux from the image with a simple
PSF model that allows its position, amplitude, and a
linear background, to vary. If the fit has a reasonable
x? value then the deblender will use this scaled PSF
model as a template for the source. Only for sources
that cannot be adequately modeled with the PSF are
the symmetric templates used.

The main failure point of this algorithm is when three
(or more) sources lie along the same axis. For exam-
ple, Figure 5 illustrates a 1D slice through the center of
three aligned sources. In this case the minimum pixel on
each side of the central source cannot constrain the flux
at that radial location and results in a template that
has extra bumps from its neighbors. This turns out
to be more catastrophic than one might expect. No-
tice that even the neighboring sources, which have very
good templates created by using symmetry on their un-
blended side, have their resulting models contaminated
due to the central object that steals flux from both of

10 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

Original Image Source 1

‘‘‘‘‘‘‘‘

Figure 4. A 1D slice of two blended Gaussian sources il-
lustrating how symmetry can be utilized to model blended
sources.

Figure 5. A 1D slice through three aligned Gaussian
sources, demonstrating a failure case of relying on symmetry
for generating deblender templates. Notice that for sources
2 and 3 the templates are reasonable but due to the inability
of source 1 to use symmetry to constrain flux in the blended
region, the resulting models for all three sources are poor.
This catastrophic ”"three in a row” problem was part of the
motivation for creating scarlet to incorporate spectral infor-
mation and a more rigorous iterative deblending algorithm.

them. In single visits the number of "three in a row”
blends is small enough that we sacrifice the quality of
the models for efficiency and still use the single-band
deblender. For LSST-depth coadds this becomes a sig-
nificant problem, as deep coadds can have as much as
40% of blends having 3 or more sources and a more so-
phisticated algorithm is needed.

5.4.3. Multi-band Deblending

The multi-band deblender is an implementation of the
scarlet deblending algorithm described in P. Melchior

et al. (2018). In our implementation, scarlet_lite,
we have made our own set of simplifying assumptions
that are different from the original scarlet algorithm to
make it more efficient when used in a large ground based
survey like LSST. Similar to the original scarlet we
make the assumption that astrophysical objects can be
thought of as a collection of components, where each
component has the properties

o Components have a single color (spectrum) that is
the same in all pixels over its shape (morphology)

e Components have flux that monotonically de-
creases from the center

e Component flux is additive

The classic example is decomposing a single galaxy
into bulge and disk components, where both the bulge
and disk share a common center but have different spec-
tra and morphologies. Something more complex, like
a grand design spiral, could in theory be modeled as a
source with multiple components, where spiral arms and
star forming regions could still be thought of as sepa-
rate monotonic components. For the science pipelines
we ignore those more complicated structures, as detec-
tion typically already shreds large galaxies into multiple
sources. Instead we use a signal to noise cut where low
flux sources are modeled with a single component and
higher flux sources are modeled with two components.

Scarlet lite initializes models with nearly the same
templates as those generated by the single-band de-
blender. Using a x2-like monochromatic image created
by weighting each band by its inverse variance, scar-
let lite creates initial morphology models that are sym-
metric from the center in the monochromatic image,
with the additional constraint that the flux is mono-
tonically decreasing from the center. In order to sat-
isfy the constraint that all pixels in the morphology
have the same spectrum, scarlet models exist in a par-
tially deconvolved frame with the seeing of a well sam-
pled but narrow Gaussian. The initial spectrum of each
source is determined using a least squares fit of each
monochromatic morphology, convolved with the differ-
ence kernel in each band to match the image, for each
component. It then uses proximal-ADAM (PADAM, P.
Melchior et al. 2019) to iteratively update the spectrum
and morphology with the given constraints until con-
vergence or a maximum number of iterations is reached.
It should be noted that although we do use symmetry
to initialize the scarlet models, we do not implement a
symmetry constraint and the final models are not guar-
anteed to be symmetric. The models are stored as the
object_model_data data product, which contains all

THE LSST SCIENCE PIPELINES 11

of the blends for a single patch. Like the single-band
deblender, the scarlet_lite models are only used as
templates to redistribute flux from the image and all
measurements are performed on the flux redistributed
models.

5.5. Source Measurement

After sources are detected (5.3) and optionally de-
blended (5.4), the source measurement tasks are respon-
sible for applying a suite of measurement plugins on the
deblended pixels for each source. Centroiders, shape
measurements, and photometry algorithms are all im-
plemented as measurement plugins.

We also distinguish between measurement on the orig-
inal detection image (SingleFrameMeasurementTask)
vs. measurement on a different image from the origi-
nal detection (ForcedMeasurementTask). Measurement
could be performed on a single-visit image, a coadd of
multiple images, or a difference of images: from the per-
spective of a measurement plugin, there is no difference
between these cases. Forced measurement is performed
on one image using a “reference” catalog of sources that
were detected on another image.

The measurement tasks, plugin base classes, and a
suite of standard common plugins are defined in the
meas_base package, including (but not limited to):

5.5.1. PFramework Mechanics

Plugins are enabled or disabled in a measurement
task via the task’s configuration, and each plugin has
its own configuration nested within the task configura-
tion. When a measurement task is constructed, it con-
structs instances of its enabled plugins, providing them
a schema object that they can use to declare and docu-
ment their output columns. Each plugin is responsible
for defining and filling in columns in the output source
catalog, and almost all plugins include columns for un-
certainties and at least one flag column to report fail-
ures.

Measurement plugins often depend on each other, and
must be run in a particular order. Rather than creat-
ing a directed acyclic graph to denote the dependen-
cies, the plugins are batched and are run in any or-
der within a batch. The batch order is defined by
the getExecutionOrder method, with smaller execu-
tion numbers being run first. BasePlugin defines a list
of named constants for particular cases:

1. CENTROID_ORDER for plugins that require only
footprints and peaks

2. SHAPE_ORDER for plugins that require a centroid to
have been measured

3. FLUX_ORDER for plugins that require both a shape
and centroid to have been measured.

The measurement system also provides a slot system
for predefined aliases to allow a plugin to get a value
without knowing exactly what plugin originally com-
puted that value, e.g., slot_Centroid could point to
base_SdssCentroid, or some other plugin that mea-
sures centroids.

While the measurement tasks and plugin interfaces are
pure Python, most concrete measurement plugins are
implemented in C++4, since they need to loop pixels.

When a measurement task is run, it starts by making
an empty SourceCatalog (from the “afw.table“ library,
see 4) with the plugin-defined schema and one row for
each of the Footprint objects returned by previous de-
tection and deblending tasks. It then temporarily re-
places all pixels within Footprints by random noise.
As the task loops over each row in the output catalog,
that source’s pixels are restored — either to the original
Exposure pixels for isolated or otherwise un-deblended
sources, or to the deblender’s HeavyFootprint values
for deblended children — and the plugins are called in
execution order. Each plugin is given the full modified
Exposure and a row of the output catalog to fill in.
Note that plugins are not limited to using only the pix-
els within a Footprint; they get to decide themselves
which pixels to use. After each source is measured, the
task replaces its pixels with noise again, allowing the
next source to be measured independently.

5.5.2. Aperture Corrections
TODO
5.5.3. Sky Objects
TODO
5.5.4. Standard Measurement Plugins
TODO: highlight important meas_base algorithms.
5.5.5. Gaussian Aperture and PSF Photometry

meas_extensions_gaap implements the Gaussian
Aperture and PSF photometry (GAaP) algorithm (K.
Kuijken 2008). It is an aperture photometry algorithm
designed to obtain consistent colors of extended objects
(i.e., galaxies). This is done by weighting each (pre-
seeing) region of a galaxy by the same pre-defined 2D
Gaussian function in all the bands and is thus largely in-
sensitive to the seeing conditions in the different bands.
In practice, this is done by first convolving each object
by a kernel (using the same tools described in §6.3) so
that the PSF is Gaussian and is larger by about 15%
(this is configurable). As a second step, each Gaussian-
ized object is then weighted with a Gaussian aperture

12 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

so that the effective pre-seeing Gaussian aperture is the
same for all objects in all the bands. The plugin is con-
figured to use a series of circular Gaussian apertures, an
elliptical Gaussian aperture (optionally) that matches
the shape of the object in the reference band.

Although the two-step approach is motivated by the
original implementation in K. Kuijken (2008), the im-
plementation of this algorithm within the broader con-
text of the measurement framework makes it different
from the implementation used in the Kilo-Degree Survey
(KiDS; A. H. Wright et al. 2024). In particular, because
neighboring objects are replaced with noise before mea-
surement, Gaussianization of the PSF does not result
in increased blending as mentioned in Appendix A2 of
K. Kuijken et al. (2015). Furthermore, the uncertainty
handling is different. Correlations in noise introduced
due to PSF-Gaussianization is included in the uncer-
tainty estimates. However, because only per-pixel noise
variance is tracked, the noise treatment is forced to as-
sume that the noise is uncorrelated to begin with which
is not true on the coadds. See A. Kannawadi (2022) for
more details on the implementation details.

Note that this measurements from this plugin do not
produce total fluxes, but should only be used to obtain
colors. For total fluxes, measurements from cModel or
MultiProFit (c.f., §5.6.2) are recommended.

5.5.6. Kron Photometry
TODO
5.5.7. HSM Shapes

The meas_extensions_shapeHSM package contains
the plugins to measure the shapes of objects. The plug-
ins measure the moments of the sources and PSFs with
adaptive Gaussian weights. The algorithm was initially
described in C. Hirata & U. Seljak (2003) and was mod-
ified later in R. Mandelbaum et al. (2005). The im-
plementation of these algorithms lives within the hsm
module of the GalSim package (B. T. P. Rowe et al.
2015). meas_extensions_shapeHSM now interacts di-
rectly with the Python layer of GalSim to make the
measurements.

The base plugin for measuring moments
is the HsmMomentsPlugin and is the par-
ent class of the HsmSourceMomentsPlugin and
HsmPsfMomentsPlugin which are specialized to
measure on the sources (and objects) and PSFs
respectively. HsmSourceMomentsRoundPlugin is a
further specialized plugin that measures the mo-
ments with circular Gaussian weights instead of the
elliptical ones in HsmSourceMomentsPlugin. The
HsmPsfMomentsDebiasedPlugin adds noise to the PSF
image to degrade it to have the same signal-to-noise

ratio (SNR) as the source image. This makes the
ellipticity calculated from this plugin have the same
bias as the source ellipticity The PSF moments from
this plugin should be used when calculating ellipticity
residuals so the bias is largely cancelled. Having the
various specializations as distinct plugins allows an
object to be measured under different configurations
simultaneously and included in the output catalogs.

In addition to the plugins that measure (adap-
tive) weighted moments, there are also a series of
HsmShape plugins to estimate the PSF-corrected ellip-
ticities of objects. In particular, the outputs from
HsmShapeRegaussPlugin have been used to measure
weak gravitational lensing signals in the Hyper Suprime-
Cam SSP data (R. Mandelbaum et al. 2018; X. Li et al.
2022).

In addition to the second moments that characterize
the size and ellipticity of the PSF, higher-order mo-
ments — those beyond second order — capture more
subtle aspects of the PSF shape, such as skewness,
kurtosis, and other asymmetric or non-Gaussian fea-
tures. The HigherOrderMomentsPSFConfig is a plu-
gin within meas_extensions_shapeHSM to calculate the
higher order moments of the PSF models whereas
HigherOrderMomentsSourcePlugin calculates that of
the sources (and objects). The definitions of the higher
moments are given in T. Zhang et al. (2023). These mo-
ments are measured in normalized coordinates, where
the normalized x-axis is along the major axis and the
normalized y-axis along the minor. Such a normaliza-
tion implies that the moments are dependent only on
features of the light profile beyond second moments, and
does not scale with the flux, position, size or orientation
of the object. It is designed to be used in conjunction
with the HsmShapePlugin and HsmPsfMomentsPlugin
plugins, which measure the second moments for the nor-
malization, and provides the HSM adaptive Gaussian
kernel. By default, we compute the third and fourth
order moments of the source and PSF images.

5.6. Trailed Sources
TODO

5.6.1. CModel Galaxy Fitting
TODO

5.6.2. MultiProfit Galazy Fitting

MultiProFit is a package for Gaussian mixture model
fitting (D. S. Taranu 2025). MultiProFit is primar-
ily used to provide multiband Sersic model fits to ob-
jects using all available coadds. The multiprofit
package is a standalone Python-only package that pro-
vides the interfaces for astronomical object fitting.

THE LSST SCIENCE PIPELINES 13

multiprofit depends primarily on gauss2d_fit, a
standalone C++ package with Python bindings for
fast evaluation of Gaussian mixture model likelihoods
and gradients thereof. gauss2d_fit in turn is an ex-
tension of gauss2d, providing additional classes for
parameters with arbitrary limits and transformations
from the modelfit_parameters header-only C++ li-
brary. All of these packages are included in the sci-
ence pipelines but can also be installed independently,
asmultiprofit only depends on other standalone pack-
ages like pex_config.

The meas_extensions_multiprofit package con-
tains pipeline tasks (with interfaces defined in
pipe_tasks) necessary to run multiprofit on coad-
ded and deblended images. The first of these tasks fits
a Gaussian mixture model to the PSF model image at
the location of each object in a patch. This procedure
is similar to the shapelet PSF fitting functionality in
meas_modelfit. The main differences are that the com-
ponents are pure Gaussians (shapelet parameters are not
supported), can have independent shapes, and are con-
strained to have integrals summing to unity (i.e., they
are normalized). Currently, only a maximum of two
components are supported; this limitation may be re-
moved in the future.

The remainder of the tasks in
meas_extensions_multiprofit wuse the Gaussian
mixture PSF model to fit a PSF-convolved model to
all objects in a given patch, for all available bands.
Convenient tasks are available for a variety of models,
including a single Sersic, as well as multi-component
bulge-disk models with an optional central point source
component. In all cases, the structural parameters
for each component are band-independent, with a
separate total flux parameter for each band. That
is, individual components do not have intrinsic color
gradients (although the convolved models might, if the
PSF parameters vary by band).

5.6.3. Reliability Scoring

TODO: move this out of the measurement subsection

The meas_transiNet package determines a numerical
score for input cutout images using pre-trained machine-
learning models. Image differencing may produce false
detections, so time-domain surveys chacteristically use
machine learning classifiers to distinguish astrophysical
sources from artifacts (“Real/Bogus;” e.g., J. S. Bloom
et al. 2012; D. A. Goldstein et al. 2015; D. A. Duev et al.
2019).

The meas_transiNet defines “model packages” that
consist of a python architecture class, a PyTorch (A.
Paszke et al. 2019) weights file, and associated metadata.

The inference task may be configured to load a model
package from disk or from the Butler.

The RBTransiNetTask PipelineTask takes as input
three square cutouts of configurable size from the sci-
ence, template, and difference images centered on the
location of a source. These images are concatenated,
batched into Torch blobs, and passed to the model for in-
ference. Either CPU or GPU backends may be used for
inference. The output of the task is a single float rang-
ing from 0-1 for each cutout triplet, with higher values
indicating that the DIASource is more likely to be as-
trophysical. These reliability scores are then joined with
the DIASource catalogs by a later transformation task.
Detailed discussion of the model architecture, training,
and performance will be presented in T. Acero Cuellar
et. al (in prep.).

5.7. PSF Modeling

Point-spread function (PSF) modeling in the LSST
Science Pipelines is largely delegated to external li-
braries, albeit with considerable wrapper code to adapt
them to a common interface. We use both a heavily
modified version of PSFEx (E. Bertin 2011) and Piff
(M. Jarvis et al. 2021a,b) in our production pipelines.
PSFEx is faster, and is used in nightly alert processing
and as to obtain a preliminary model in data release
processing, while Piff is used in a second, more careful
round of PSF estimation in data release processing for
better accuracy (especially for weak gravitational lens-
ing).

5.7.1. meas_extensions_psfex

The meas_extensions_psfex package pro-
vides an interface to our own library version of
the PSFEx command-line tool. At its core is
PsfexPsfDeterminerTask, which prepares these
selected stars for input into PSFEx, calls into the
library, and converts the output into an LSST-specific
PSF object (PsfexPsf). Key parameters such as
spatial interpolation order and oversampling ratio are
controlled via PsfexPsfDeterminerConfig.

For each CCD in the focal plane, PSFEx indepen-
dently models the PSF as a linear combination of ba-
sis vectors and captures spatial variation using poly-
nomial interpolation. PsfexStarSelectorTask offers a
built-in mechanism for star selection using strict cuts
on signal-to-noise ratio, FWHM range, ellipticity, and
quality flags.

5.7.2. meas_extensions_piff

The meas_extensions_piff package is a wrapper
around the Piff package. Piff is a modular pack-
age that supports various PSF models, interpolation

14 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

schemes, and coordinate systems. It can operate on
a per-CCD basis or over the full field of view, as
indicated by its name. The implementation within
meas_extensions_piff does not exploit the full mod-
ularity of Piff; instead, it closely follows the method
used for cosmic shear analysis like in DES (M. Jarvis
et al. 2021b; T. Schutt et al. 2025), but it has been de-
signed to make it easy to add support for more options
as needed.

The PSF model utilized is a PixelGrid, and the inter-
polation is performed using BasisPolynomial interpo-
lation (M. Jarvis et al. 2021b). Modeling is executed per
CCD and can employ either pixel or sky coordinates. A
key difference from PSFex is that Piff implements out-
lier rejection based on chi-squared criteria (see M. Jarvis
et al. 2021b, for more details).

Most of the configuration described here is adjustable
through the PiffPsfDeterminerConfig. Some im-
portant features that were implemented by M. Jarvis
et al. (2021b) and T. Schutt et al. (2025) have not
yvet been enabled but will be available in the near fu-
ture. M. Jarvis et al. (2021b) configure Piff to fit in
sky coordinates with a world-coordinate system trans-
form (WCS) that includes CCD distortions such as tree
rings. meas_extensions_piff is capable of doing the
same, but our models do not yet include CCD distor-
tions, and hence thus far we have not used this approach
in our production configuration, as it doesn’t signifi-
cantly improve the quality of the PSF models. Addi-
tionally, although T. Schutt et al. (2025) incorporated a
color correction to account for chromatic effects on the
PSF, this correction has not yet been implemented in
meas_extensions_piff.

5.8. Astrometric and Photometric Calibration

Astrometric and photometric calibration in data re-
lease processing is performed in two very different steps.
First, astrometric and photometric solutions for each de-
tector are fit independently to a reference catalog, which
is sufficient to enable matching and filtering for more
sophisticated later algorithms and validation. In the
nightly alert processing, we expect to be able to use a
high-density reference catalog produced by the most re-
cent Rubin data release, and these single-detector fits
represent the final calibrations. In data release process-
ing, a much more sophisticated final astrometric and
photometric transform are then fit to catalogs from mul-
tiple epochs at once.

The Rubin pipeline uses the Starlink AST library
(D. S. Berry et al. 2016) for persisting, composing, and
evaluating coordinate transformations. We have our
own BoundedField class in the afw package for repre-

senting (among other things) photometric calibrations,
usually with Chebyshev polynomials. These can also be
multiplied and even mixed with AST-backed transform
objects to represent pixel-area corrections.

5.8.1. Single-Frame Astrometric Calibration

Single-frame astrometric fits are performed by
AstrometryTask in meas_astrom. This task matches
a catalog of sources detected and measured on an im-
age to a reference catalog and solves for the World
Coordinate System (WCS) of the image. Match-
ing and WCS fitting are performed iteratively, to
reject astrometric outliers. = The matcher is either
the optimistic (MatchOptimisticBTask) or pessimistic
(MatchPessimisticBTask) matcher from V. Tabur
(2007), with the pessimistic matcher used by default
due to better performance on dense fields; see (C. B.
Morrison 2018) for details. The WCS fitter can be a
simple affine model on top of fixed camera geometry,
as in FitAffineWcsTask, or a FITS TAN-SIP WCS
(D. L. Shupe et al. 2005), as in FitTanSipWCSTask or
FitSipDistortionTask. We default to fitting the sim-
ple affine model because we have good distortion models
for most of the instruments we support, often from pre-
vious fitting with gbdes (§5.8.2), and hence we do not
need the extra degrees of freedom provided by a TAN-
SIP model.

5.8.2. GBDES

The final solution is fit by
GbdesAstrometricFitTask in drp_tasks, which
runs the wesfit fitter from the gbdes package (G. M.
Bernstein 2022; G. M. Bernstein et al. 2017) on the
ensemble of images in a given band overlapping with
a given tract. This task fits a per-detector polynomial
distortion model, a per-exposure polynomial distortion
model, and position for all the isolated star sources in
the component images. This is done by first associating
all isolated point sources in the input images and
matching them with an external reference catalog.
The model is then fit by iterating between fitting the
per-detector and per-exposure polynomial models,
and recalculating the best-fit solution for the object
positions.

The task can be configured to fit either a two-
parameter (position on the sky) or five-parameter (posi-
tion, proper motion, and parallax) solution for the input
objects. Correcting for differential chromatic refraction
is another configurable option.

There are also options to run variants
of the main GbdesAstrometricFitTask:
GbdesAstrometricMultibandFitTask fits im-
ages from multiple bands at once, in which

astrometric

THE LSST SCIENCE PIPELINES 15

case the per-detector distortion model is also
per-band; GbdesGlobalAstrometricFitTask re-
moves the restriction to a single tract and fits
images regardless of their location on the sky
by splitting the images into contiguous groups;
GbdesGlobalAstrometricMultibandFitTask com-
bines these two options.

Lastly, the per-detector polynomial model fit by the
task is also used to build a camera distortion model,
which can be fed back into single-frame modeling or
into the gbdes fit for other data. For use in single-
frame modeling, the BuildCameraFromAstrometryTask
subtask is used to build an afw Camera object out of
the native polynomial model.

A full description of astrometric calibration in the
pipeline is given in C. Saunders (2024).

5.8.3. Single-Frame Photometric Calibration

Single frame photometric calibration is performed by
PhotoCalTask, in the pipe_tasks package. The catalog
to be calibrated is down-selected to contain only bright
(S/N > 10), well measured, PSF-like sources which
are then matched to a reference catalog. The matched
sources have their instrumental fluxes converted into
rough magnitudes, which are iteratively compared with
the reference catalog magnitudes using a sigma-clipping
algorithm, to fit a single magnitude zero point to the
whole image. Precomputed color terms can also be ap-
plied to the reference catalog fluxes when needed.

5.84. FGCM

Global photometric calibration is computed via the
Forward Global Calibration Method (FGCM D. L.
Burke et al. 2018), as adapted for LSST (P. Fagre-
lius & E. Rykoff 2025). This global calibration algo-
rithm makes use of repeated observations of stars in all
ugrizy bands, combining a forward model of the atmo-
spheric parameters with instrumental throughputs mea-
sured with auxiliary information. In this way we simul-
taneously constrain the atmospheric model as well as
standardized top-of-atmosphere (TOA) star fluxes over
a wide range of star colors, including full chromatic cor-
rections from the instrument and atmosphere.

Running fgemeal first requires generating a look-up
table. The input to the look-up table includes the ef-
fect of a MODTRAN (A. Berk et al. 1999) atmospheric
model at the elevation of the observatory, as well as
the throughput as a function of wavelength and position
from the optics, filters, and detector quantum efficiency.
The quality of the output (in terms of repeatability of
bright isolated stars across a wide range of colors) de-
pends on the knowledge of the instrumental throughput.

The primary goal of fgecmeal is to provide a uniform
relative photometric calibration of the survey. For “ab-
solute” (relative) calibration, a reference catalog can be
used as an additional constraint on the fit. Thus, the
overall throughput output by fgemcal depends on the
reference catalog. This can be checked with (e.g.) spe-
cific white dwarfs or CALSPEC (R. C. Bohlin 2007)
stars in the survey. However, the relative spatial and
chromatic calibration of the fgemcal calibration means
that the absolute calibration reduces to a set of 6 num-
bers (one for each band, or one overall throughput and
5 absolute colors).

5.8.5. jointcal

jointcal fits both astrometry and photometry across
multiple exposures of large mosaic cameras, fitting for
both the true star positions/fluxes, and the distortions
caused by the telescope and instrument. jointcal is no
longer used used by the LSST camera pipeline, but is
available for use by cameras that are not supported by
gbdes and/or fgcmeal (for example, DECam). More
details on the jointcal algorithm are available in (J.
Parejko & P. Astier 2018).

5.9. Catalog Schemas

Pipeline products must be transformed from the in-
ternal data model to the public data model defined in
M. Juri¢ et al. (2023). A set of YAML files in the
pipe_tasks® repository are used for transforming the
internal pipelines representation of the data to a stan-
dardized parquet output format. These parquet files
are continually validated against an appropriate schema
to ensure that the column names and types are correct
as the pipelines codebase evolves, as described in Sec-
tion ??. For data previews and releases, the parquet
files are then ingested into the Qserv database, where
the data catalogs are stored.

The public data model is defined by a set of files
in the Felis (J. McCormick et al. 2024) YAML format
which describe the schema of a data catalog, including
its tables, columns, constraints and metadata. These
are collectively referred to as the Science Data Model
(SDM) schemas. The YAML files are managed with the
sdm_schemas repository” with all changes validated by
GitHub workflows. The schemas corresponding to Sci-
ence Pipelines output are continually evolving with the
pipelines codebase, so, for instance, column names and
types may be updated to reflect changes to the internal
data model. Schemas for data previews and releases rep-

8 https://github.com/lsst/pipe_ tasks
9 https://github.com/lsst/sdm__schemas

https://github.com/lsst/pipe_tasks
https://github.com/lsst/sdm_schemas

16 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

resent a snapshot of the public data model at the time
of the release and would typically only be updated with
bug fixes, minor changes, or updates and additions to
the metadata. For public-facing data catalogs, the Fe-
lis representation is used to generate a TAP_ SCHEMA
database describing the tables and columns available in
the TAP service (P. Dowler et al. 2019) and serves as a
source of documentation. User data access to the data
catalogs is provided primarily through the Astronom-
ical Data Query Language (ADQL) through the TAP
service, with the tables and columns being validated
against the TAP_ SCHEMA as part of the query exe-
cution process.

6. HIGH-LEVEL TASKS AND PIPELINES

In this section, we describe how the reusable com-
ponents of 5 are assembled into pipelines for generating
nightly alerts immediately from just-observed data, pro-
ducing cumulative data releases roughly every year, and
creating calibrations that are input to both on many
cadences in between. This also includes some descrip-
tion of algorithmic details that are specific to certain
pipelines.

6.1. Single-Frame Processing and Calibration
6.1.1. CalibrateImage

CalibrateImageTask, from the pipe_tasks package,
performs “single frame processing” on a post-ISR
(§5.1) single detector exposure. We repair and mask
cosmic rays and defects, perform an initial set of
detection (§5.3) and measurement (§5.5) passes to
estimate the image Point Spread Function (PSF),
compute an astrometric (§5.8.1) and photometric
(§5.8.3) calibration, and compute summary statistics
on the resulting nanojansky-calibrated exposure and

catalog. The primary user-facing outputs of this
task are the photometrically calibrated, background-
subtracted preliminary_visit_image, the cal-
ibrated preliminary_visit_image_background
that was subtracted from it, and
single_visit_star_unstandardized, a catalog

of bright point-like sources that were used as inputs to
calibration, with only a small number of measurements
performed on them. As this task only processes a single
detector, it is used by both DRP (§6.7) and AP (§6.6),
though with different configurations (AP is focused on
latency, while DRP performs more measurements). For
more details of the exact steps performed in this task,
see the CalibratelmageTask pipelines documentation.

6.1.2. ReprocessVisitImage

In DRP, ReprocessVisitImageTask, from the
drp_tasks package, takes the outputs of the global

astrometric and photometric models, a visit-level
background, and PSF model and re-runs detec-
tion and measurement on the post-ISR single-
detector exposure. The primary user-facing out-
puts of this task are the photometrically calibrated,
background-subtracted visit_image, the calibrated
visit_image_background that was subtracted from it,
and source_unstandardized, a catalog of all sources
detected to 5-sigma, with all relevant measurements
performed on them (this is standardized and consoli-
dated into the source per-visit catalog). Besides its
primary purpose of performing detection and measure-
ment using the “best” available inputs, this task also
allows us to only have to save a small number of rela-
tively small-sized intermediate products in order to re-
generate the visit_image from a raw image, reducing
long-term storage needs. For more details of the exact
steps performed in this task, see the ReprocessVisitIm-
age pipelines documentation.

6.2. Coaddition and Object Tables

Coaddition Tasks

Coadded images are used as static-sky templates for
image subtraction and detecting and measuring faint
sources. The coaddition process is divided into two main
stages: resampling the input images onto a common pro-
jection and stacking those resampled images into a sin-
gle coadd. Each stage is implemented via configurable
tasks that allow the pipelines to be adapted for differ-
ent instruments and observing strategies. The first step
in coaddition is to resample each single-epoch exposure
onto a common projection defined by a skymap (see sec-
tion 4), one patch at a time. This step is performed by
the following Tasks:

e MakeDirectWarpTask performs a straightforward
resampling of calibrated exposures.

o MakePsfMatchedWarpTask also convolves them to
a configurable, common model-PSF. This PSF-
homogenized variant is useful when the scientific
goals require uniform PSF properties across the
coadd and is used for artifact rejection during
coaddition.

All warping tasks use a configurable interpolation ker-
nel. A 5th-order Lanczos kernel is used by default,
balancing fidelity and computational efficiency, with a
nearest-neighbor kernel for the integer bitmask. Input
images are geometrically transformed using the World
Coordinate System (WCS) and interpolated onto the
target projection defined by a tract and patch geome-
try. Each resulting resampled image is called a warp.

https://pipelines.lsst.io/v/daily/modules/lsst.pipe.tasks/tasks/lsst.pipe.tasks.calibrateImage.CalibrateImageTask.html
https://pipelines.lsst.io/v/daily/modules/lsst.drp.tasks/tasks/lsst.drp.tasks.reprocess_visit_image.ReprocessVisitImageTask.html
https://pipelines.lsst.io/v/daily/modules/lsst.drp.tasks/tasks/lsst.drp.tasks.reprocess_visit_image.ReprocessVisitImageTask.html

THE LSST SCIENCE PIPELINES 17

Once warps are generated, they are stacked
into a final coadd by AssembleCoaddTask or one
of its subclasses. The default implementation,
CompareWarpAssembleCoaddTask, performs outlier re-
jection to remove transient artifacts such as cosmic rays,
ghosts, satellite trails, and moving objects. The algo-
rithm compares pixel values across epochs and masks
those that significantly deviate from the expected dis-
tribution. The artifact rejection algorithm is detailed in
Y. AlSayyad (2019). By default, weights for stacking
are derived from the inverse of the average variance of
each warp, with optional filters on PSF quality and see-
ing. The stacked image is accompanied by a mask plane
and variance map, and the set of input PSF models
is combined into a spatially-varying coadd PSF model
(CoaddPsf) to serve as the PSF model for the coadd.

Object Catalog Production

TODO

6.3. Difference Image Analysis

Image subtraction for transient/variable detection
and analysis is implemented in the ip_diffim package,
and is divided into three steps. While the image sub-
traction system could be used to work on other com-
binations, we primarily focus on subtracting a “tem-
plate” coadd from a single-visit “science” image. First,
the template coadd is warped by GetTemplateTask
to the WCS and bounding box of the science image.
Then the warped template is subtracted from the sci-
ence image using one of several available algorithms in
SubtractImagesTask, which produces a temporary dif-
ference image. Finally, peaks are detected on the differ-
ence image and DIASources (“difference image analysis
sources”) are measured in DetectAndMeasureTask. The
final difference image with updated mask planes is writ-
ten along with the DIASource catalog.

6.3.1. PSF Matching and Subtraction

The primary implementation of image subtraction
used by SubtractImagesTask is based on C. Alard &
R. H. Lupton (1998), and uses spatially-varying Gauss-
Hermite basis functions for the fit. The PSF-matching
kernel can be constructed for either the science or the
template image, and the resulting difference image is
decorrelated D. J. Reiss & R. H. Lupton (2016). Op-
tionally, the science image can be preconvolved with its
own PSF before PSF-matching, producing a Score image
analogous to B. Zackay et al. (2016).

6.3.2. DIA Detection and Measurement

Positive and negative peaks are detected by threshold-
ing the Score image if it is available. Otherwise, the dif-
ference image is smoothed with a Gaussian of the same

width as the PSF of the science image, and thresholds
are taken on the smoothed image. Contiguous pixels
around each peak that are statistically brighter than
the background are grouped into source footprints, and
any overlapping footprints are merged. Footprints that
contain both a positive and a negative peak are fit as
dipoles. The dipole fit simultaneously solves for the neg-
ative and positive lobe centroids and fluxes using non-
linear least squares minimization. DiaSources that are
not classified as dipoles instead fall back on an SDSS-
style centroid (J. R. Pier et al. 2003). Finally, all config-
ured measurement plugins are run, including HSM shape
measurements (Section 5.5.7) and a trailed-source fit.

6.3.3. Filtering Non-astrophysical DIASources

A subset of the DIASources detected during
detectAndMeasureDiaSource are expected to be non-
astrophysical. These may be due to a variety of causes,
including uncorrected instrument signatures, diffraction
spikes and wings of bright stars, unmasked cosmic rays,
algorithmic failures in background subtraction or image
differencing, and satellites or space debris orbiting the
Earth. The latter can leave long streaks that cross one
or more LSSTCam detectors (J. A. Tyson et al. 2020; I.
Hasan et al. 2022).

To reduce the number of DiaSources originating from
non-astrophysical sources, we apply a multi-prong ap-
proach:

e During detection, we remove sources that have
pixel flags characteristic of artifacts and unusable
measurements, such as when all of the central pix-
els of a DIASource are saturated.

e In AP, we identify and filter out DIASources that
are spatially and temporally coincident with the
predicted positions of catalogued artificial satel-
lites.

e DIASources with negative forced fluxes on
the direct science image characteristic of bad
background subtraction are filtered. This
and subsequent catalog filtering is carried out by
ap_association.FilterDiaSourceCatalogTask.

o Trailed DIASources consistent with a rate of mo-
tion greater than 10 degrees per day are filtered.

e Blank sky sources used for noise estimation are
removed from the output catalog.

No pixels are altered or redacted during the steps
above. The machine-learned reliability score (§5.6.3)
provides a further diagnostic that users can apply to

18 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

remove remaining artifacts. These approaches are in-
tended to enable science users to control the tradeoff
between completeness and purity during their analy-
sis while ensuring that the pipelines and databases can
maintain their required performance.

6.3.4. Source Association

The ap_association package contains multiple tasks
for standardizing newly detected DIASources and asso-
ciating them into “DIAObjects®. Standardization con-
verts the output catalogs from difference imaging to the
format specified in sdm_schemas (§5.9), and applies fil-
tering consistent with (W. O’Mullane et al. 2024). Once
DIASource catalogs are standardized, they are associ-
ated to DIAObjects in either of two modes: Data Re-
lease Production (DRP) or Alert Production (AP). Both
implementations use the Pessimistic Pattern Matcher B
(C. B. Morrison 2018) to score and match DIASources,
but differ in how DIAObjects are stored and how visits
are ordered.

e DRP association loads all DIASource catalogs
from a set time period overlapping a single patch
at once, and creates new DIAODbjects for matched
DIASources from all visits simultaneously.

o AP association processes a single visit at a time,
and creates new DIAODbjects incrementally from
unassociated DIASources. DIAObjects and their
associated DIASources are stored in the Alert Pro-
duction Database (APDB; §6.3.5).

After association, an additional filtering step may be
applied to DIASources with no matched DIAObject or
Solar System object (§6.4). Properties of the source such
as its reliability score (§5.6.3, source flags, or signal-to-
noise cuts may be used to drop detections that are likely
to be false detections and avoid creating erroneous new
DIAODbjects.

6.3.5. Alert Production Database (APDB)

The Alert Production Database (APDB; A. Sal-
nikov & J. McCormick 2024)) supports SQL, Post-
gres, and Cassandra database formats. The previous
history of DIAObjects, DIASources, and DiaForced-
Sources for the region containing the science image is
loaded with LoadDiaCatalogsTask, which are passed
to DiaPipelineTask for association. Loading is split
from the association step to enable preloading of cata-
logs from the database in Prompt Processing during the
interval when the next visit has been scheduled but the
images have not yet been taken. When AP-style associa-
tion is run outside of Prompt Processing, it is therefore

essential to process all association tasks in strict visit
order to prevent loading catalogs from the APDB pre-
maturely and losing DiaObject history in association.

6.3.6. Alert Generation

In order to to enable real-time science, the AP
pipelines generate alert packets for each detected DI-
ASource. These packets are serialized in Apache Avro!'?
format and then transmitted to community alert bro-
kers via Kafka for further processing. M. Patterson et al.
(2020) provides a high-level overview of the alert system.

Within the pipelines, alert packets are constructed
by PackageAlertsTask within ap_association. Alert
packets contain the triggering DIASource record; the
associated DIAObject or SSObject record; up to twelve
months of past history from DIASources, DIAForced-
Sources, and/or upper limits; and cutout images of the
science, template, and difference images centered at the
position of the cutout. Cutouts are provided as FITS
images serialized by the astropy CCDData class, and in-
clude image, variance, and mask planes along with WCS
information and an image of the approximate PSF.

Avro schemas are stored in the alert_packet pack-
age. They are derived from the corresponding AP
schemas in sdm_schemas used to instantiate the AP
databases.

6.4. Solar System Pipelines

The Solar System Pipeline (SSP; Figure 6) suite is re-
sponsible for (i) discovering previously unknown solar
system objects by linking together observations (usu-
ally DIASources) unattributable to static (non-moving)
sources, (ii) reporting these to the Minor Planet Cen-
ter (MPC), (iii) computing basic physical characteristics
such as absolute magnitudes and slope parameters for all
asteroids where sufficient data is available, and (iv) us-
ing the orbits received from the MPC to associate their
apparitions in the DIASource tables (both in real-time
and as precovery).

The core element of the SSP is the linking pipeline,
named heliolinx (A. Heinze et al. 2023). This code,
run in daytime, clusters newly detected DIAObjects to
search for candidate asteroids. The high-level procedure
is to link DIASource detections within a night (when on-
sky motion is approximately linear) into tracklets, to link
these tracklets across multiple nights (into tracks) and
to fit the tracks with an orbital model to identify those
tracks that are consistent with an asteroid orbit. The
Rubin implementation of this software (Heinze et al.,
in prep.) is based on the HelioLinC algorithm (M. J.

10 https://avro.apache.org/

THE LSST SCIENCE PIPELINES 19

T+6 hrs
MPC submission —_——

T+10hrs

§ 65 hrs
| rong Linking New orbits &
(hetiotine) d;‘,i;gnmzrfgs
10 hrs. -
Daily
Data Products 1-ehrs

Production
N cohcache (B
(sorcha, mpsky)
T+10-¢ hrs

T+24 hrs

g nsso | 700 Observing
Attribution s

Figure 6. Detection, attribution, linking, submission and
precovery of moving sources within the nightly data: The
attribution is performed in real-time by the AP pipelines
querying the mpsky service with resulting information at-
tached to the alerts and queued for submission to the MPC.
The linking is performed in daytime using heliolinx, with
resulting links queued for submission to the MPC. Fetch-
ing of data from the MPC is performed automatically using
PostgreSQL replication, with new data triggering recompu-
tation of physical properties and precovery runs in the Daily
Data Products Pipeline. Any observations discovered by the
precovery procedure are queued for submission to the MPC,
using the submission manager tool. The ephemeris cache is
precomputed at dusk using Sorcha and mpsky, to enable fast
attribution at nighttime. All timings denote design goals.

Holman et al. 2018), with the key change being that
the clustering is performed not on the sky, but in 3D
space. It is designed to be capable of detecting 95% of all
Solar System objects whose tracklets are observed over
three nights within a 15-night window.!!. heliolinx is
written in C4++, but provides a Python API including
a Task APIL.

Candidate discoveries with high degree of certainty,
as well as re-observations of already known objects, are
reported to the Minor Planet Center (MPC) using the
observation submission pipeline. The astrometric and
photometric data are converted to the PSV variant of
the Astrometric Data Exchange Standard (ADES; S. R.
Chesley et al. 2017), and submitted via a HTTPS POST
API provided by the MPC.

Following processing and validation of newly re-
ported candidates, they’re added to the MPC’s central
database. This database, including the table of orbits
as well as observations, is replicated using PostgreSQL
logical replication. Following the replication, the Daily
Data Products Pipeline recomputes the absolute mag-
nitudes of objects in the SSObject table, as well as some

11 Detailed criteria are specified in the LSST Observatory System
Specification (OSS) document 0SS-REQ-0159 (C. F. Claver &
The LSST Systems Engineering Integrated Project Team 2018)

auxiliary per-observation information for individual ob-
servations (the SSSource table).

The replicated orbits and computed absolute mag-
nitudes are utilized to predict positions (ephemerides)
and magnitudes of solar system objects in subsequent
night. To enable speedy retrieval (on order of 100msec
or less) of all objects in a visit, we precompute on-sky
locations of all solar system objects, fit Chebyshev
polynomials, and build an efficient HEALpix-based
index allowing for fast lookup. These ephemerides
are then served to association pipelines described in
Section ?7. This element of the pipeline is based on
Sorcha (computation; S. R. Merritt et al. 2025) and
mpsky (fast lookup and serving; M. Juric 2014). While
still being constructed, a similar service is planned
for “precovery” — the association of originally missed
observations of solar system objects observed earlier in
the survey.

Taken together, this suite of pipelines enables Rubin
to identify sources consistent with being observations of
objects in the solar system (both new and previously
known), and makes these data public by reporting their
discoveries to the Minor Planet Center and making them
available to Rubin users within via the PPDB.

6.5. Calibration pipelines

The high-level pipelines to build calibration products
(cp) for the LSST cameras are defined in cp_pipe'®.
They set IsrTaskLSST (see Section 5.1) configuration
parameters needed for each calibration product, by en-
abling all the sequential steps of the ISR task up to
the step before the correction being generated. In some
cases, configurations also specify whether to combine ex-
posures (for bias or dark exposures for instance) and to
bin exposures to support diagnostic displays.

Once calibration products are produced, they are “ver-
ified” (see C. Waters & E. Rykoff (2025) for more de-
tails) using cp_verify'? pipelines by checking they pass
metrics defined in R. Lupton et al. (2025). In this case,
verify configuration parameters enable all corrections in
the ISR task up to and including the application of the
correction being verified. As a result, the calibration
products can then be certified to be available in the
butler and used to ISR an exposure.

12 https://github.com/Isst/cp_pipe and see documentation at
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-
calibrations.html

13 https://github.com/lsst/cp_ verify

https://github.com/lsst/cp_pipe
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-calibrations.html
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-calibrations.html
https://github.com/lsst/cp_verify

20 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

6.6. ap_pipe

The ap_pipe package defines the pipeline(s) to be
used for real-time Alert Production processing (K.-T.
Lim 2022). These pipelines include instrument signature
removal (§5.1), calibration (§5.8), measurement plug-
ins (§5.5), image differencing (§6.3), source association
(§6.3.4), and alert generation (§6.3.6). Some of these
tasks are shared with the pipelines in drp_pipe, but are
configured to prioritize speed over strict quality; for ex-
ample, they use a minimal set of measurement plugins.

ap_pipe currently has pipeline variants for LSSTCam,
LSSTComCam, LATISS, the Rubin Observatory simu-
lators, Hyper-SuprimeCam, and the Dark Energy Cam-
era. Because these variants serve as testbeds for AP-
specific algorithms and configuration settings, they are,
as much as possible, the “same” pipeline, differing al-
most entirely in loading instrument defaults from obs
packages (§3.5). The only other customization is an
extra task for handling DECam’s inter-chip crosstalk,
which does not have an equivalent for Rubin instru-
ments.

6.7. drp_pipe
TODO

7. ANALYSIS TOOLING
7.1. Display Abstractions

The afw.display subpackage defines a simple image
display abstraction layer that be used to show our im-
age objects via multiple applications and libraries. This
includes programmatic control of stretch levels and col-
ors, WCS mapping, semi-transparent bitmask overlays,
and simple geometric region support.

There are currently implementations for matplotlib
(J. D. Hunter 2007), Firefly (W. Roby et al. 2020),
SAOImage DS9 (W. A. Joye & E. Mandel 2003), and
Ginga (E. Jeschke et al. 2013, via Astrowidgets). While
most of these tools have considerable functionality be-
yond what our abstraction layer provides, the ability to
interact easily with them in a consistent, programmatic
way in many different contexts (e.g. DS9 on personal
machines, matplotlib and Ginga in Jupyter notebooks,
and Firefly in the Rubin Science Platform) is invaluable,
and usually the afw.display provides all we need.

7.2. Analysis Tools

The analysis_tools package provides a framework
to allow reproducible, automatic creation of plots and
metrics through a set of configurable, reusable tools that
can be used in pipeline execution and interactive anal-
ysis. The package allows metrics and plots to be con-
sistently created at various points in the pipeline and

ensures that the metrics dispatched to the monitoring
dashboard are generated in sync with the archived plots.
An example plot, made with HSC data, is shown in
Fig. 7. The package was designed to handle the large
data volumes and memory requirements that the sur-
vey will generate to ensure that the initial QA products
required are rapidly made and readily available for fast
action on any emergent data quality issues. The individ-
ual tools run in the pipelines to calculate the metrics can
then be reused in an interactive environment, such as a
script or notebook, allowing further investigation into
arising issues to reproduce exactly what was originally
run.

Further information and examples can be found in
S. L. Reed (2025).

targetRefCatDeltaPsfScatterPlot

_10 010 Median of patch
values for

RA (deg) '
33w

Output Mag - Ref Mag (mmag)

190 195 200 205 21.0 215 220 225 10! 10°
PSF Magnitude (magas) Count

SIN > 2700 Sats (PSF Magnitude (magas) < 16.63) |
Median: -1565 0uast 9831 Ny 12 i

Figure 7. An example figure produced as part of the stan-
dard processing by analysis tools, the plot is information
dense as it is designed for an audience familiar with the out-
puts but a simplified version can also be produced for talks
and publications by setting a config option. The metrics
shown in the bottom right of the plot are also saved sepa-
rately to be displayed by various pieces of QA tooling.

7.3. Source Injection

The source_injection package contains tools de-
signed to assist in the injection of synthetic sources into
scientific imaging. Source injection is a powerful tool for
testing the algorithmic performance of the LSST Science
Pipelines, generating measurements on synthetic sources
where the truth is known and facilitating subsequent
quality assurance checks. Synthetic source generation
and injection capability is provided by the GALSIM soft-
ware package (B. T. P. Rowe et al. 2015). An example
showcasing the injection of a series of synthetic Sérsic
sources into an HSC i-band image is shown in Figure 8.

Synthetic sources can be injected into any imaging
data product output by the LSST Science Pipelines, in-
cluding visit-level exposure-type or visit-type datasets

THE LSST SCIENCE PIPELINES 21

Figure 8. An HSC i-band cutout from tract 9813, patch
42, showing before (top) and after (bottom) the injection of a
series of synthetic Sérsic sources. Images are 100 arcseconds
on the short axis, log scaled across the central 99.5% flux
range, and smoothed with a Gaussian kernel of FWHM 3
pixels.

(i.e., datasets with the dimension exposure or visit),
or into a coadd-level coadded dataset. These in-
jection tasks are defined in ExposurelnjectTask,
VisitInjectTask and CoaddInjectTask, respectively.
Each task operates similarly: read in an injection catalog
containing the parameters of the sources to be injected,
generate sources using GALSIM, and inject them into the
input image. An additonal mask plane (INJECTED by de-
fault) is appended to the image mask to identify pixels
which have been touched by injected sources. Optional
modifications to the noise profiles of injected sources and
the variance plane of the image can also be performed.

With GALSIM we have the capacity to generate syn-
thetic sources of varying profile types, including Gaus-
sian, exponential and Sérsic profiles (J. L. Sérsic 1963,
1968), each convolved with the local PSF. We also have
the option to inject scaled versions of the PSF model
itself in order to simulate stars. If preferred, a pre-
generated FITS image of a source can be injected in-
stead of a model generated by GALSIM, allowing for the

injection of complex sources or postage stamp cutouts
of real data.

Alongside the primary injection tasks, a suite of
helper tools are also provided to optionally assist in
the generation of synthetic source catalogs and injec-
tion pipelines. Fully qualified source injection pipeline
definition YAML files are normally constructed using an
existing pipeline as a baseline reference. A user specifies
which dataset type they would like to inject synthetic
sources into, and the source_injection package gen-
erates a new pipeline definition YAML file that includes
the correctly configured source injection task. By de-
fault, all tasks in the pipeline downstream of the point
at which source injection occurs are modified such that
their connection names are prefixed with injected_.
This ensures that an injected dataset is not confused
with the original dataset when stored together in a com-
mon collection.

Once source injection has completed, the source in-
jection task will output two dataset types: an injected
image, and an associated injected catalog. The injected
image is a copy of the original image with the injected
sources added. The injected catalog is a catalog of the
injected sources, with the same schema as the original
catalog and additional columns describing per-source
source injection success outcomes.

8. CONCLUSIONS

The LSST Science Pipelines Software has been de-
veloped over 20 years to support the processing of the
Legacy Survey of Space and Time. It has been used to
process formal data releases from both Hyper Suprime
Cam and the Rubin Observatory’s LSSTComCam and
is now being used to process LSSTCam commissioning
data. The software is designed to be extensible and
reusable, supporting a plugin architecture that allows
new algorithms to be added without modifying the core
codebase and includes a dataset tracking system and
graph builder that supports scaling of processing on
large batch systems.

ACKNOWLEDGMENTS

This material is based upon work supported in part by
the National Science Foundation through Cooperative
Agreements AST-1258333 and AST-2241526 and Coop-
erative Support Agreements AST-1202910 and 2211468
managed by the Association of Universities for Re-
search in Astronomy (AURA), and the Department of
Energy under Contract No. DE-AC02-76SF00515 with
the SLAC National Accelerator Laboratory managed
by Stanford University. Additional Rubin Observatory

22 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

funding comes from private donations, grants to univer-
sities, and in-kind support from LSST-DA Institutional
Members. This research has made use of NASA’s As-
trophysics Data System Bibliographic Services.

Facilities: Rubin:Simonyi (LSSTCam), Rubin:1.2m
(LATISS)

Software: ndarray (https://github.com/ndarray/
ndarray), astropy (Astropy Collaboration et al. 2022),
pytest (H. Krekel 2017), matplotlib (J. D. Hunter 2007),
galsim (B. T. P. Rowe et al. 2015), numpy (C. R. Harris
et al. 2020), gbdes (G. M. Bernstein 2022), Starlink’s
(D. Berry et al. 2022) AST (D. S. Berry et al. 2016),
fgem (https://github.com/erykoff/fgem),

REFERENCES

Alard, C., & Lupton, R. H. 1998, A Method for Optimal
Image Subtraction, ApJ, 503, 325, doi: 10.1086/305984

AlSayyad, Y. 2019, Coaddition Artifact Rejection and
CompareWarp, Data Management Technical Note
DMTN-080, NSF-DOE Vera C. Rubin Observatory.
https://dmtn-080.1sst.io/

Astropy Collaboration, Price-Whelan, A. M., Sip&cz,
B. M., et al. 2018, The Astropy Project: Building an
Open-science Project and Status of the v2.0 Core
Package, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,
et al. 2022, The Astropy Project: Sustaining and
Growing a Community-oriented Open-source Project and
the Latest Major Release (v5.0) of the Core Package,
ApJ, 935, 167, doi: 10.3847/1538-4357/acTc74

Axelrod, T., Connolly, A., Ivezic, Z., et al. 2004, The LSST
Data Processing Pipeline, in American Astronomical
Society Meeting Abstracts, Vol. 205, American
Astronomical Society Meeting Abstracts, 108.11

Axelrod, T., Kantor, J., Lupton, R. H., & Pierfederici, F.
2010, An open source application framework for
astronomical imaging pipelines, in Proc. SPIE; Vol. 7740,
Software and Cyberinfrastructure for Astronomy, ed.

N. M. Radziwill & A. Bridger, 15, doi: 10.1117/12.857297
Babuji, Y., Woodard, A., Li, Z., et al. 2019, Parsl: Pervasive
Parallel Programming in Python, in Proceedings of the

28th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’19 (New
York, NY, USA: Association for Computing Machinery),
25-36, doi: 10.1145/3307681.3325400

Berk, A., Anderson, G. P., Bernstein, L. S., et al. 1999,
MODTRAN(4 radiative transfer modeling for atmospheric
correction, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 3756, Optical
Spectroscopic Techniques and Instrumentation for
Atmospheric and Space Research III, ed. A. M. Larar,
International Society for Optics and Photonics (SPIE),
348 — 353, doi: 10.1117/12.366388

Bernstein, G. M. 2022, gbdes: DECam instrumental
signature fitting and processing programs,, Astrophysics
Source Code Library, record ascl:2210.011

Bernstein, G. M., Armstrong, R., Plazas, A. A., et al. 2017,
Astrometric Calibration and Performance of the Dark
Energy Camera, PASP, 129, 074503,
doi: 10.1088/1538-3873/aabc55

Berry, D., Graves, S., Bell, G. S., et al. 2022, Starlink - The
Original and Best, in Astronomical Society of the Pacific
Conference Series, Vol. 532, Astronomical Data Analysis
Software and Systems XXX, ed. J. E. Ruiz,

F. Pierfedereci, & P. Teuben, 559

Berry, D. S., Warren-Smith, R. F., & Jenness, T. 2016,
AST: A library for modelling and manipulating
coordinate systems, Astronomy and Computing, 15, 33,
doi: 10.1016/j.ascom.2016.02.003

Bertin, E. 2011, Automated Morphometry with SExtractor
and PSFEx, in Astronomical Society of the Pacific
Conference Series, Vol. 442, Astronomical Data Analysis
Software and Systems XX, ed. I. N. Evans,

A. Accomazzi, D. J. Mink, & A. H. Rots, 435

Bertin, E., & Arnouts, S. 1996, SExtractor: Software for
source extraction., A&AS, 117, 393,
doi: 10.1051/aas:1996164

Bloom, J. S.; Richards, J. W., Nugent, P. E., et al. 2012,
Automating Discovery and Classification of Transients
and Variable Stars in the Synoptic Survey Era, PASP,
124, 1175, doi: 10.1086/668468

Bohlin, R. C. 2007, HST Stellar Standards with 1%
Accuracy in Absolute Flux, in Astronomical Society of
the Pacific Conference Series, Vol. 364, The Future of
Photometric, Spectrophotometric and Polarimetric
Standardization, ed. C. Sterken, 315,
doi: 10.48550/arXiv.astro-ph/0608715

Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, The
Hyper Suprime-Cam software pipeline, PASJ, 70, S5,
doi: 10.1093/pasj/psx080

Boulade, O., Charlot, X., Abbon, P., et al. 2003, MegaCam:
the new Canada-France-Hawaii Telescope wide-field
imaging camera, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 4841, Instrument Design and Performance for
Optical/Infrared Ground-based Telescopes, ed. M. Iye &
A. F. M. Moorwood, 72-81, doi: 10.1117/12.459890

https://github.com/ndarray/ndarray
https://github.com/ndarray/ndarray
https://github.com/erykoff/fgcm
http://doi.org/10.1086/305984
https://dmtn-080.lsst.io/
http://doi.org/10.3847/1538-3881/aabc4f
http://doi.org/10.3847/1538-4357/ac7c74
http://doi.org/10.1117/12.857297
http://doi.org/10.1145/3307681.3325400
http://doi.org/10.1117/12.366388
http://doi.org/10.1088/1538-3873/aa6c55
http://doi.org/10.1016/j.ascom.2016.02.003
http://doi.org/10.1051/aas:1996164
http://doi.org/10.1086/668468
http://doi.org/10.48550/arXiv.astro-ph/0608715
http://doi.org/10.1093/pasj/psx080
http://doi.org/10.1117/12.459890

THE LSST SCIENCE PIPELINES 23

Broughton, A., Utsumi, Y., Plazas Malagén, A. A., et al.
2024, Mitigation of the Brighter-fatter Effect in the LSST
Camera, PASP, 136, 045003,
doi: 10.1088,/1538-3873/ad3aa2

Burke, D. L., Rykoff, E. S., Allam, S., et al. 2018, Forward
Global Photometric Calibration of the Dark Energy
Survey, AJ, 155, 41, doi: 10.3847/1538-3881/aa9f22

Cai, M., Xu, Z., Fan, L., et al. 2025, The 2.5-meter Wide
Field Survey Telescope Real-time Data Processing
Pipeline I: From raw data to alert distribution, arXiv
e-prints, arXiv:2501.15018,
doi: 10.48550/arXiv.2501.15018

Chesley, S. R., Hockney, G. M., & Holman, M. J. 2017,
Introducing ADES: A New IAU Astrometry Data
Exchange Standard, in AAS/Division for Planetary
Sciences Meeting Abstracts, Vol. 49, AAS/Division for
Planetary Sciences Meeting Abstracts #49, 112.14

Claver, C. F., & The LSST Systems Engineering Integrated
Project Team. 2018, Observatory System Specifications
(0SS), Systems Engineering Controlled Document
LSE-30, Vera C. Rubin Observatory.
https://1s.st/LSE-30

DePoy, D. L., Abbott, T., Annis, J., et al. 2008, The Dark
Energy Camera (DECam), in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 7014, Ground-based and Airborne Instrumentation
for Astronomy II, ed. I. S. McLean & M. M. Casali,
70140E, doi: 10.1117/12.789466

Dowler, P., Rixon, G., Tody, D., & Demleitner, M. 2019,
Table Access Protocol Version 1.1, IVOA
Recommendation 27 September 2019

Duev, D. A., Mahabal, A., Masci, F. J., et al. 2019,
Real-bogus classification for the Zwicky Transient
Facility using deep learning, MNRAS, 489, 3582,
doi: 10.1093/mnras/stz2357

Esteves, J. H., Utsumi, Y., Snyder, A., et al. 2023,
Photometry, Centroid and Point-spread Function
Measurements in the LSST Camera Focal Plane Using
Artificial Stars, PASP, 135, 115003,
doi: 10.1088/1538-3873/ad0a73

Fagrelius, P., & Rykoff, E. 2025, Rubin Baseline Calibration
Plan, Commissioning Technical Note SITCOMTN-086,
NSF-DOE Vera C. Rubin Observatory.
https://sitcomtn-086.1sst.io/

Fausti, A. 2023, Sasquatch: beyond the EFD, SQuaRE
Technical Note SQR-068, NSF-DOE Vera C. Rubin
Observatory. https://sqr-068.1sst.io/

Fausti Neto, A., Economou, F., Reuter, M. A.| et al. 2024,
Sasquatch: Rubin Observatory metrics and telemetry
service, in Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series, Vol. 13101, Software
and Cyberinfrastructure for Astronomy VIII, ed. J. Ibsen
& G. Chiozzi, 131011M, doi: 10.1117/12.3019081

Fernandes, L. A. F., & Oliveira, M. M. 2008, Real-time line
detection through an improved Hough transform voting
scheme, Pattern Recognition, 41, 299,
doi: 10.1016/j.patcog.2007.04.003

Flaugher, B., Diehl, H. T., Honscheid, K., et al. 2015, The
Dark Energy Camera, The Astronomical Journal, 150,
150, doi: 10.1088,/0004-6256/150/5/150

Goldstein, D. A.; D’Andrea, C. B., Fischer, J. A., et al.
2015, Automated Transient Identification in the Dark
Energy Survey, AJ, 150, 82,
doi: 10.1088/0004-6256/150/3/82

Gower, M., Kowalik, M., Lust, N. B., Bosch, J. F., &
Jenness, T. 2022, Adding Workflow Management
Flexibility to LSST Pipelines Execution, arXiv e-prints,
arXiv:2211.15795, doi: 10.48550/arXiv.2211.15795

Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
2020, Array programming with NumPy, Nature, 585, 357,
doi: 10.1038/s41586-020-2649-2

Hasan, I., Tyson, J. A., Saunders, C., & Xin, B. 2022,
Mitigating satellite trails: A study of residual light after
masking, Astronomy and Computing, 39, 100584,
doi: 10.1016/j.ascom.2022.100584

Heinze, A., Juric, M., & Kurlander, J. 2023, heliolinx: Open
Source Solar System Discovery Software,

Hirata, C., & Seljak, U. 2003, Shear calibration biases in
weak-lensing surveys, MNRAS, 343, 459,
doi: 10.1046/j.1365-8711.2003.06683.x

Holman, M. J., Payne, M. J., Blankley, P., Janssen, R., &
Kuindersma, S. 2018, HelioLinC: A Novel Approach to
the Minor Planet Linking Problem, AJ, 156, 135,
doi: 10.3847/1538-3881/aad69a

HTCondor Team. 2024, HTCondor, 23.0.15 Zenodo,
doi: 10.5281/zenodo.14238973

Hunter, J. D. 2007, Matplotlib: A 2D Graphics
Environment, Computing in Science and Engineering, 9,
90, doi: 10.1109/MCSE.2007.55

Ingraham, P., Clements, A. W., Ribeiro, T., et al. 2020,
Vera C. Rubin Observatory auxiliary telescope
commissioning as a control system pathfinder, in Society
of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 11452, Software and
Cyberinfrastructure for Astronomy VI, ed. J. C. Guzman
& J. Ibsen, 114520U, doi: 10.1117/12.2561112

http://doi.org/10.1088/1538-3873/ad3aa2
http://doi.org/10.3847/1538-3881/aa9f22
http://doi.org/10.48550/arXiv.2501.15018
https://ls.st/LSE-30
http://doi.org/10.1117/12.789466
http://doi.org/10.1093/mnras/stz2357
http://doi.org/10.1088/1538-3873/ad0a73
https://sitcomtn-086.lsst.io/
https://sqr-068.lsst.io/
http://doi.org/10.1117/12.3019081
http://doi.org/10.1016/j.patcog.2007.04.003
http://doi.org/10.1088/0004-6256/150/5/150
http://doi.org/10.1088/0004-6256/150/3/82
http://doi.org/10.48550/arXiv.2211.15795
http://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.1016/j.ascom.2022.100584
http://doi.org/10.1046/j.1365-8711.2003.06683.x
http://doi.org/10.3847/1538-3881/aad69a
http://doi.org/10.5281/zenodo.14238973
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.1117/12.2561112

24 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

Ivezié, Z., Kahn, S. M., Tyson, J. A., et al. 2019, LSST:
From Science Drivers to Reference Design and
Anticipated Data Products, ApJ, 873, 111,
doi: 10.3847/1538-4357 /ab042c

Jarvis, M., Meyers, J., Leget, P.-F., & Davis, C. 2021a, Piff:
PSFs In the Full FOV,, Astrophysics Source Code
Library, record ascl:2102.024

Jarvis, M., Bernstein, G. M., Amon, A., et al. 2021b, Dark
Energy Survey year 3 results: point spread function
modelling, MNRAS, 501, 1282,
doi: 10.1093/mnras/staa3679

Jenness, T. 2020, Modern Python at the Large Synoptic
Survey Telescope, in Astronomical Society of the Pacific
Conference Series, Vol. 522, Astronomical Data Analysis
Software and Systems XXVII, ed. P. Ballester, J. Ibsen,
M. Solar, & K. Shortridge, 541,
doi: 10.48550/arXiv.1712.00461

Jenness, T., Economou, F., Findeisen, K., et al. 2018, LSST
data management software development practices and
tools, in Proc. SPIE, Vol. 10707, Software and
Cyberinfrastructure for Astronomy V, 1070709,
doi: 10.1117/12.2312157

Jenness, T., Bosch, J., Owen, R., et al. 2016, Investigating
interoperability of the LSST data management software
stack with Astropy, in Proc. SPIE, Vol. 9913, Software
and Cyberinfrastructure for Astronomy IV, 99130G,
doi: 10.1117/12.2231313

Jenness, T., Bosch, J. F., Salnikov, A., et al. 2022, The
Vera C. Rubin Observatory Data Butler and pipeline
execution system, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 12189, Software and Cyberinfrastructure for
Astronomy VII, 1218911, doi: 10.1117/12.2629569

Jeschke, E., Inagaki, T., & Kackley, R. 2013, Introducing
the Ginga FITS Viewer and Toolkit, in Astronomical
Society of the Pacific Conference Series, Vol. 475,
Astronomical Data Analysis Software and Systems XXII,
ed. D. N. Friedel, 319

Joye, W. A., & Mandel, E. 2003, New Features of
SAOImage DS9, in Astronomical Society of the Pacific
Conference Series, Vol. 295, Astronomical Data Analysis
Software and Systems XII, ed. H. E. Payne, R. 1.
Jedrzejewski, & R. N. Hook, 489

Juric, M. 2014, mpsky: Multi-purpose sky catalog
cross-matching,

Jurié, M., Ciardi, D., Dubois-Felsmann, G., & Guy, L.
2019, LSST Science Platform Vision Document, Systems
Engineering Controlled Document LSE-319, NSF-DOE
Vera C. Rubin Observatory. https://Ise-319.1sst.io/

Jurié, M., Kantor, J., Lim, K. T., et al. 2017, The LSST
Data Management System, in Astronomical Society of
the Pacific Conference Series, Vol. 512, Astronomical
Data Analysis Software and Systems XXV, ed. N. P. F.
Lorente, K. Shortridge, & R. Wayth, 279,
doi: 10.48550/arXiv.1512.07914

Jurié, M., Axelrod, T., Becker, A., et al. 2023, Data
Products Definition Document, Systems Engineering
Controlled Document LSE-163, NSF-DOE Vera C. Rubin
Observatory. https://lse-163.1sst.io/

Kahn, S. M., Kurita, N., Gilmore, K., et al. 2010, Design
and development of the 3.2 gigapixel camera for the
Large Synoptic Survey Telescope, in Society of
Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 7735, Ground-based and Airborne
Instrumentation for Astronomy III, ed. I. S. McLean,

S. K. Ramsay, & H. Takami, 0, doi: 10.1117/12.857920

Kannawadi, A. 2022, Consistent galaxy colors with
Gaussian-Aperture and PSF photometry, Data
Management Technical Note DMTN-190, NSF-DOE Vera
C. Rubin Observatory. https://dmtn-190.1sst.io/

Karavakis, E., Guan, W., Yang, Z., et al. 2024, Integrating
the PanDA Workload Management System with the Vera
C. Rubin Observatory, in European Physical Journal
Web of Conferences, Vol. 295, European Physical Journal
Web of Conferences (EDP), 04026,
doi: 10.1051/epjconf/202429504026

Knight, S. 2005, Building software with SCons, Computing
in Science Engineering, 7, 79, doi: 10.1109/MCSE.2005.11

Krekel, H. 2017, pytest: helps you write better programs,
https://docs.pytest.org

Kuijken, K. 2008, GaaP: PSF- and aperture-matched
photometry using shapelets, A&A, 482, 1053,
doi: 10.1051/0004-6361:20066601

Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015,
Gravitational lensing analysis of the Kilo-Degree Survey,
MNRAS, 454, 3500, doi: 10.1093 /mnras/stv2140

Labrie, K., Simpson, C., Cardenes, R., et al. 2023,
DRAGONS-A Quick Overview, Research Notes of the
American Astronomical Society, 7, 214,
doi: 10.3847/2515-5172/ad0044

Lange, T., Nordby, M., Pollek, H., et al. 2024, Integrating
the LSST camera, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series,
Vol. 13096, Ground-based and Airborne Instrumentation
for Astronomy X, ed. J. J. Bryant, K. Motohara, &

J. R. D. Vernet, 1309610, doi: 10.1117/12.3019302

Li, X., Miyatake, H., Luo, W., et al. 2022, The three-year
shear catalog of the Subaru Hyper Suprime-Cam SSP
Survey, PASJ, 74, 421, doi: 10.1093/pasj/psac006

http://doi.org/10.3847/1538-4357/ab042c
http://doi.org/10.1093/mnras/staa3679
http://doi.org/10.48550/arXiv.1712.00461
http://doi.org/10.1117/12.2312157
http://doi.org/10.1117/12.2231313
http://doi.org/10.1117/12.2629569
https://lse-319.lsst.io/
http://doi.org/10.48550/arXiv.1512.07914
https://lse-163.lsst.io/
http://doi.org/10.1117/12.857920
https://dmtn-190.lsst.io/
http://doi.org/10.1051/epjconf/202429504026
http://doi.org/10.1109/MCSE.2005.11
https://docs.pytest.org
http://doi.org/10.1051/0004-6361:20066601
http://doi.org/10.1093/mnras/stv2140
http://doi.org/10.3847/2515-5172/ad0044
http://doi.org/10.1117/12.3019302
http://doi.org/10.1093/pasj/psac006

THE LSST SCIENCE PIPELINES 25

Lim, K.-T. 2022, Proposal and Prototype for Prompt
Processing, Data Management Technical Note
DMTN-219, NSF-DOE Vera C. Rubin Observatory.
https://dmtn-219.1sst.io/

Lupton, R., Plazas Malagén, A. A., & Waters, C. 2025,
Verifying LSST Calibration Data Products, Data
Management Technical Note DMTN-101, NSF-DOE Vera
C. Rubin Observatory. https://dmtn-101.1sst.io/

Lust, N. B., Jenness, T., Bosch, J. F., et al. 2023, Data
management and execution systems for the Rubin
Observatory Science Pipelines, arXiv e-prints,
arXiv:2303.03313, doi: 10.48550/arXiv.2303.03313

Mandelbaum, R., Hirata, C. M., Seljak, U., et al. 2005,
Systematic errors in weak lensing: application to SDSS
galaxy-galaxy weak lensing, MNRAS, 361, 1287,
doi: 10.1111/j.1365-2966.2005.09282.x

Mandelbaum, R., Miyatake, H., Hamana, T., et al. 2018,
The first-year shear catalog of the Subaru Hyper
Suprime-Cam Subaru Strategic Program Survey, PASJ,
70, S25, doi: 10.1093/pasj/psx130

McCormick, J., Dubois-Felsmann, G. P., Salnikov, A., Van
Klaveren, B., & Jenness, T. 2024, Using Felis to
Represent the Semantics and Metadata of Astronomical
Data Catalogs, arXiv e-prints, arXiv:2412.09721,
doi: 10.48550/arXiv.2412.09721

Melchior, P., Joseph, R., & Moolekamp, F. 2019, Proximal
Adam: Robust Adaptive Update Scheme for Constrained
Optimization, arXiv e-prints, arXiv:1910.10094,
doi: 10.48550/arXiv.1910.10094

Melchior, P., Moolekamp, F., Jerdee, M., et al. 2018,
SCARLET: Source separation in multi-band images by
Constrained Matrix Factorization, Astronomy and
Computing, 24, 129, doi: 10.1016/j.ascom.2018.07.001

Merritt, S. R., Fedorets, G., Schwamb, M. E., et al. 2025,
Sorcha: A Solar System Survey Simulator for the Legacy
Survey of Space and Time, arXiv e-prints,
arXiv:2506.02804, doi: 10.48550/arXiv.2506.02804

Miyazaki, S., Komiyama, Y., Kawanomoto, S., et al. 2018,
Hyper Suprime-Cam: System design and verification of
image quality, PASJ, 70, S1, doi: 10.1093/pasj/psx063

Morrison, C. B. 2018, Pessimistic Pattern Matching for
LSST, Data Management Technical Note DMTN-031,
NSF-DOE Vera C. Rubin Observatory.
https://dmtn-031.1sst.io/

Mueller, F., et al. 2023, Qserv: A Distributed Petascale
Database for the LSST Catalogs, in ASP Conf. Ser., Vol.
TBD, ADASS XXXII, ed. S. Gaudet, S. Gwyn,

P. Dowler, D. Bohlender, & A. Hincks (San Francisco:
ASP), in press. https://dmtn-243.Isst.io

Mullaney, J. R., Makrygianni, L., Dhillon, V., et al. 2021,
Processing GOTO data with the Rubin Observatory
LSST Science Pipelines I: Production of coadded frames,
PASA, 38, €004, doi: 10.1017/pasa.2020.45

NSF-DOE Vera C. Rubin Observatory. 2025, Legacy
Survey of Space and Time Data Preview 1 [Data set],
NSF-DOE Vera C. Rubin Observatory,
doi: 10.71929/RUBIN /2570308

Okura, Y., Petri, A., May, M., Plazas, A. A., & Tamagawa,
T. 2016, Consequences of CCD Imperfections for
Cosmology Determined by Weak Lensing Surveys: From
Laboratory Measurements to Cosmological Parameter
Bias, The Astrophysical Journal, 825, 61,
doi: 10.3847/0004-637X/825/1/61

Okura, Y., Plazas, A. A., May, M., & Tamagawa, T. 2015,
Spurious shear induced by the tree rings of the LSST
CCDs, Journal of Instrumentation, 10, C08010,
doi: 10.1088/1748-0221/10/08/C08010

O’Mullane, W., Economou, F., Lim, K.-T., et al. 2022,
Software Architecture and System Design of Rubin
Observatory, arXiv e-prints, arXiv:2211.13611,
doi: 10.48550/arXiv.2211.13611

O’Mullane, W., Economou, F., Huang, F., et al. 2024,
Rubin Science Platform on Google: the story so far, in
Astronomical Society of the Pacific Conference Series,
Vol. 535, Astromical Data Analysis Software and Systems
XXXI, ed. B. V. Hugo, R. Van Rooyen, & O. M.
Smirnov, 227, doi: 10.48550/arXiv.2111.15030

O’Mullane, W., Allbery, R., AlSayyad, Y., et al. 2024,
Rubin Observatory Data Security Standards
Implementation, Data Management Technical Note
DMTN-199, NSF-DOE Vera C. Rubin Observatory.
https://dmtn-199.1sst.io/

Padmanabhan, N., Lupton, R., & Loomis, C. 2015, EUPS
— a Tool to Manage Software Dependencies,
https://github.com/RobertLuptonTheGood/eups

Parejko, J., & Astier, P. 2018, jointcal: Simultaneous
Astrometry & Photometry for thousands of Exposures
with Large CCD Mosaics, Data Management Technical
Note DMTN-036, NSF-DOE Vera C. Rubin Observatory.
https://dmtn-036.1sst.io/

Park, H., Karpov, S., Nomerotski, A., & Tsybychev, D.
2020, Tree rings in Large Synoptic Survey Telescope
production sensors: its dependence on radius, wavelength,
and back bias voltage, Journal of Astronomical
Telescopes, Instruments, and Systems, 6, 011005,
doi: 10.1117/1.JATIS.6.1.011005

https://dmtn-219.lsst.io/
https://dmtn-101.lsst.io/
http://doi.org/10.48550/arXiv.2303.03313
http://doi.org/10.1111/j.1365-2966.2005.09282.x
http://doi.org/10.1093/pasj/psx130
http://doi.org/10.48550/arXiv.2412.09721
http://doi.org/10.48550/arXiv.1910.10094
http://doi.org/10.1016/j.ascom.2018.07.001
http://doi.org/10.48550/arXiv.2506.02804
http://doi.org/10.1093/pasj/psx063
https://dmtn-031.lsst.io/
https://dmtn-243.lsst.io
http://doi.org/10.1017/pasa.2020.45
http://doi.org/10.71929/RUBIN/2570308
http://doi.org/10.3847/0004-637X/825/1/61
http://doi.org/10.1088/1748-0221/10/08/C08010
http://doi.org/10.48550/arXiv.2211.13611
http://doi.org/10.48550/arXiv.2111.15030
https://dmtn-199.lsst.io/
https://github.com/RobertLuptonTheGood/eups
https://dmtn-036.lsst.io/
http://doi.org/10.1117/1.JATIS.6.1.011005

26 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

Park, H. Y., Nomerotski, A., & Tsybychev, D. 2017,
Properties of tree rings in LSST sensors, Journal of
Instrumentation, 12, C05015,
doi: 10.1088/1748-0221/12/05/C05015

Paszke, A., Gross, S., Massa, F., et al. 2019, PyTorch: An
Imperative Style, High-Performance Deep Learning
Library, in Advances in Neural Information Processing
Systems, ed. H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, & R. Garnett, Vol. 32 (Curran
Associates, Inc.), doi: 10.48550/arXiv.1912.01703

Patterson, M., Bellm, E., Swinbank, J., & Nelson, S. 2020,
Design of the LSST Alert Distribution System, Data
Management Technical Note DMTN-093, NSF-DOE Vera
C. Rubin Observatory. https://dmtn-093.1Isst.io/

Pier, J. R., Munn, J. A., Hindsley, R. B., et al. 2003,
Astrometric Calibration of the Sloan Digital Sky Survey,
AJ, 125, 1559, doi: 10.1086/346138

Plazas Malagén, A. A., Waters, C., Broughton, A., et al.
2025, Instrument signature removal and calibration
products for the Rubin Legacy Survey of Space and Time,
Journal of Astronomical Telescopes, Instruments, and
Systems, 11, 011209, doi: 10.1117/1.JATIS.11.1.011209

Reed, S. L. 2025, An introduction to Analysis Tools, Data
Management Technical Note DMTN-314, NSF-DOE Vera
C. Rubin Observatory. https://dmtn-314.1sst.io/

Reiss, D. J., & Lupton, R. H. 2016, Implementation of
Image Difference Decorrelation, Data Management
Technical Note DMTN-021, NSF-DOE Vera C. Rubin
Observatory. https://dmtn-021.1sst.io/

Roby, W., Wu, X., Dubois—Felmann, G., et al. 2020, Firefly
and Python — New Ways to Visualize Data on the Web,
in Astronomical Society of the Pacific Conference Series,
Vol. 527, Astronomical Data Analysis Software and
Systems XXIX, ed. R. Pizzo, E. R. Deul, J. D. Mol, J. de
Plaa, & H. Verkouter, 243

Roodman, A., Rasmussen, A., Bradshaw, A., et al. 2024,
LSST camera verification testing and characterization, in
Ground-based and Airborne Instrumentation for
Astronomy X, ed. J. J. Bryant, K. Motohara, & J. R. D.
Vernet, Vol. 13096, International Society for Optics and
Photonics (SPIE), 130961S, doi: 10.1117/12.3019698

Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015,
GALSIM: The modular galaxy image simulation toolkit,
Astronomy and Computing, 10, 121,
doi: 10.1016/j.ascom.2015.02.002

Salnikov, A., & McCormick, J. 2024, Current status of
APDB and PPDB implementation, Data Management
Technical Note DMTN-293, NSF-DOE Vera C. Rubin
Observatory. https://dmtn-293.Isst.io/

Saunders, C. 2021, Streak Masking in DM Image
Processing, Data Management Technical Note
DMTN-197, NSF-DOE Vera C. Rubin Observatory.
https://dmtn-197 Isst.io/

Saunders, C. 2024, Astrometric Calibration in the LSST
Pipeline, Data Management Technical Note DMTN-266,
NSF-DOE Vera C. Rubin Observatory.
https://dmtn-266.1sst.io/

Schutt, T., Jarvis, M., Roodman, A., et al. 2025, Dark
Energy Survey Year 6 Results: Point-Spread Function
Modeling, The Open Journal of Astrophysics, 8, 26,
doi: 10.33232/001¢.132299

Sérsic, J. L. 1963, Influence of the atmospheric and
instrumental dispersion on the brightness distribution in
a galaxy, Boletin de la Asociacion Argentina de
Astronomia La Plata Argentina, 6, 41

Sérsic, J. L. 1968, Atlas de Galaxias Australes
(Observatorio Astronomico, Universidad Nacional de
Cordoba)

Shupe, D. L., Moshir, M., Li, J., et al. 2005, The SIP
Convention for Representing Distortion in FITS Image
Headers, in Astronomical Society of the Pacific
Conference Series, Vol. 347, Astronomical Data Analysis
Software and Systems XIV, ed. P. Shopbell, M. Britton,
& R. Ebert, 491

SLAC National Accelerator Laboratory, & NSF-DOE Vera
C. Rubin Observatory. 2024, LSST Commissioning
Camera, SLAC National Accelerator Laboratory (SLAC),
Menlo Park, CA (United States),
doi: 10.71929/RUBIN /2561361

Stalder, B., Reil, K., Aguilar, C., et al. 2022, Rubin
Observatory Commissioning Camera: summit integration,
in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 12184, Ground-based and
Airborne Instrumentation for Astronomy IX, ed. C. J.
Evans, J. J. Bryant, & K. Motohara, 121840J,
doi: 10.1117/12.2630184

Sutherland, W., Emerson, J., Dalton, G., et al. 2015, The
Visible and Infrared Survey Telescope for Astronomy
(VISTA): Design, technical overview, and performance,
A&A, 575, A25, doi: 10.1051/0004-6361/201424973

Tabur, V. 2007, Fast Algorithms for Matching CCD Images
to a Stellar Catalogue, PASA, 24, 189,
doi: 10.1071/AS07028

Taranu, D. S. 2025, The MultiProFit astronomical source
modelling code, Data Management Technical Note
DMTN-312, NSF-DOE Vera C. Rubin Observatory.
https://dmtn-312.Isst.io/

http://doi.org/10.1088/1748-0221/12/05/C05015
http://doi.org/10.48550/arXiv.1912.01703
https://dmtn-093.lsst.io/
http://doi.org/10.1086/346138
http://doi.org/10.1117/1.JATIS.11.1.011209
https://dmtn-314.lsst.io/
https://dmtn-021.lsst.io/
http://doi.org/10.1117/12.3019698
http://doi.org/10.1016/j.ascom.2015.02.002
https://dmtn-293.lsst.io/
https://dmtn-197.lsst.io/
https://dmtn-266.lsst.io/
http://doi.org/10.33232/001c.132299
http://doi.org/10.71929/RUBIN/2561361
http://doi.org/10.1117/12.2630184
http://doi.org/10.1051/0004-6361/201424973
http://doi.org/10.1071/AS07028
https://dmtn-312.lsst.io/

THE LSST SCIENCE PIPELINES 27

Thomas, S. J., Barr, J., Callahan, S., et al. 2022, Rubin
Observatory Simonyi Survey Telescope status overview,
in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 12182, Ground-based and
Airborne Telescopes IX, ed. H. K. Marshall,

J. Spyromilio, & T. Usuda, 121820W,
doi: 10.1117/12.2630226

Tyson, J. A., Ivezié¢, Z., Bradshaw, A., et al. 2020,
Mitigation of LEO Satellite Brightness and Trail Effects
on the Rubin Observatory LSST, AJ, 160, 226,
doi: 10.3847/1538-3881/abba3e

Utsumi, Y., Antilogus, P., Astier, P., et al. 2024, LSST
Camera focal plane optimization, in X-Ray, Optical, and
Infrared Detectors for Astronomy XI, ed. A. D. Holland
& K. Minoglou, Vol. 13103, International Society for
Optics and Photonics (SPIE), 131030W,
doi: 10.1117/12.3019117

van Rossum, G. 2013, PEP 8 — Style Guide for Python
Code, Python Software Foundation.
https://www.python.org/dev/peps/pep-0008/

Vera C. Rubin Observatory. 2025, The Vera C. Rubin
Observatory Data Preview 1, Technical Note RTN-095,
NSF-DOE Vera C. Rubin Observatory,
doi: 10.71929/rubin/2570536

Wang, D. L., Monkewitz, S. M., Lim, K.-T.; & Becla, J.
2011, Qserv: A Distributed Shared-nothing Database for
the LSST Catalog, in State of the Practice Reports, SC
’11 (New York, NY, USA: ACM), 12:1-12:11,
doi: 10.1145/2063348.2063364

Wang, S.-Y., Huang, P.-J., Chen, H.-Y., et al. 2020, Prime
Focus Spectrograph (PFS): the prime focus instrument,
in Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 11447, Ground-based and
Airborne Instrumentation for Astronomy VIII, ed. C. J.
Evans, J. J. Bryant, & K. Motohara, 114477V,
doi: 10.1117/12.2561194

Waters, C., & Rykoff, E. 2025, Calibration Generation,
Verification, Acceptance, and Certification., Data
Management Technical Note DMTN-222, NSF-DOE Vera
C. Rubin Observatory. https://dmtn-222.1sst.io/

Waters, C. Z., Magnier, E. A., Price, P. A., et al. 2020,
Pan-STARRS Pixel Processing: Detrending, Warping,
Stacking, ApJS, 251, 4, doi: 10.3847/1538-4365/abb82b

Wright, A. H., Kuijken, K., Hildebrandt, H., et al. 2024,
The fifth data release of the Kilo Degree Survey:
Multi-epoch optical/NIR imaging covering wide and
legacy-calibration fields, A&A, 686, A170,
doi: 10.1051/0004-6361 /202346730

Zackay, B., Ofek, E. O., & Gal-Yam, A. 2016, Proper Image
Subtraction—Optimal Transient Detection, Photometry,
and Hypothesis Testing, ApJ, 830, 27,
doi: 10.3847/0004-637X/830/1/27

Zhang, T., Almoubayyed, H., Mandelbaum, R., et al. 2023,
Impact of point spread function higher moments error on
weak gravitational lensing - II. A comprehensive study,
MNRAS, 520, 2328, doi: 10.1093 /mnras/stac3350

http://doi.org/10.1117/12.2630226
http://doi.org/10.3847/1538-3881/abba3e
http://doi.org/10.1117/12.3019117
https://www.python.org/dev/peps/pep-0008/
http://doi.org/10.71929/rubin/2570536
http://doi.org/10.1145/2063348.2063364
http://doi.org/10.1117/12.2561194
https://dmtn-222.lsst.io/
http://doi.org/10.3847/1538-4365/abb82b
http://doi.org/10.1051/0004-6361/202346730
http://doi.org/10.3847/0004-637X/830/1/27
http://doi.org/10.1093/mnras/stac3350

28 RUBIN OBSERVATORY DATA MANAGEMENT PIPELINE DEVELOPERS

APPENDIX

A. AMPLIFIER OFFSET CORRECTION

The amplifier offset (amp-offset) correction runs as
part of the instrument signature removal (ISR) process.
This correction is designed to address systematic dis-
continuities in background sky levels across amplifier
boundaries. It is believed that these discontinuities arise
from electronic biases between adjacent amplifiers, per-
sisting even after the application of dark and flat cor-
rections.

Drawing on the PanSTARRS Pattern Continuity al-
gorithm (C. Z. Waters et al. 2020), our method aims
to eliminate these offsets, thereby preventing problems
such as background over-/under-subtraction at amplifier
boundaries caused by discontinuities across the detector.

The amp-offset algorithm initially computes a robust
flux difference measure between two narrow strips on
opposite sides of each amplifier-amplifier interface. Re-
gions containing detected sources, or pixel data which
have been masked for other reasons, are not considered.
These amp-interface differences are stored in an amp-
offset matrix; diagonal entries represent the number of
neighboring amplifiers, and off-diagonal entries encode
information about the associations between amplifiers.
A complementary interface matrix encodes directional
information for these associations. Using this informa-
tion, a least-squares minimization is performed to de-
termine the optimal pedestal value to be added or sub-
tracted to each amp which would reduce the amp-offset
between that amplifier and all of its neighboring am-
plifiers. This method is generalized to support 2D am-
plifier geometries within a detector, as with LSSTCam,
incorporating length-based weighting into the matrices
to account for amplifiers that are not square.

	Introduction
	Fundamentals
	Python environment
	Unit Testing and Code Coverage

	Data Access and Execution Abstractions
	Butler
	Pipelines and Tasks
	Pipeline Visualization
	Configuration
	Instrument Abstractions: Obs Packages
	Metadata Translation

	Core Algorithmic Primitives and Data Structures
	Key Algorithmic Components
	Instrument Signature Removal
	ISR package

	Background Subtraction
	Source Detection
	SourceDetectionTask
	DynamicDetectionTask
	MaskStreaksTask

	Deblending
	Single-band Deblending
	Deblender Template Generation
	Multi-band Deblending

	Source Measurement
	Framework Mechanics
	Aperture Corrections
	Sky Objects
	Standard Measurement Plugins
	Gaussian Aperture and PSF Photometry
	Kron Photometry
	HSM Shapes

	Trailed Sources
	CModel Galaxy Fitting
	MultiProfit Galaxy Fitting
	Reliability Scoring

	PSF Modeling
	meas_extensions_psfex
	meas_extensions_piff

	Astrometric and Photometric Calibration
	Single-Frame Astrometric Calibration
	GBDES
	Single-Frame Photometric Calibration
	FGCM
	jointcal

	Catalog Schemas

	High-level Tasks and Pipelines
	Single-Frame Processing and Calibration
	CalibrateImage
	ReprocessVisitImage

	Coaddition and Object Tables
	Difference Image Analysis
	PSF Matching and Subtraction
	DIA Detection and Measurement
	Filtering Non-astrophysical DIASources
	Source Association
	Alert Production Database (APDB)
	Alert Generation

	Solar System Pipelines
	Calibration pipelines
	ap_pipe
	drp_pipe

	Analysis Tooling
	Display Abstractions
	Analysis Tools
	Source Injection

	Conclusions
	Amplifier Offset Correction

