
Draft version March 27, 2025
Typeset using LATEX twocolumn style in AASTeX631

The LSST Science Pipelines Software: Optical Survey Pipelined Reduction and Analysis Environment

James F. Bosch ,1 Yusra AlSayyad ,1 Tim Jenness ,2 Eric C. Bellm ,3 Robert H. Lupton ,1

Nate B. Lust ,1 Ian S. Sullivan ,3 Christopher Z. Waters ,1 Krzysztof Findeisen ,3

Erfan Nourbakhsh ,1 Agnès F. Ferté ,4 Arun Kannawadi ,5, 1

The Rubin Observatory Science Pipelines Team

1Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA
2Vera C. Rubin Observatory Project Office, 950 N. Cherry Ave., Tucson, AZ 85719, USA

3University of Washington, Dept. of Astronomy, Box 351580, Seattle, WA 98195, USA
4SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA

5Department of Physics, Duke University, Durham, NC 27708, USA

ABSTRACT
The NSF-DOE Vera C. Rubin Observatory will produce the Legacy Survey of Space and Time

(LSST) and produce 11 data releases over the ten-year survey. The LSST Science Pipelines Software
will be used to create these data releases and to perform the nightly alert production. This paper
provides an overview of the LSST Science Pipelines Software and describes the components and how
they are combined to form pipelines.

Keywords: Astrophysics - Instrumentation and Methods for Astrophysics — methods: data analysis
— methods: miscellaneous

1. INTRODUCTION
The NSF-DOE Vera C. Rubin Observatory will be

performing the 10-year Legacy Survey of Space and
Time (LSST; Ivezić et al. 2019) starting in 2025. Ru-
bin Observatory is located on Cerro Pachon in Chile

http://orcid.org/0000-0003-2759-5764
http://orcid.org/0009-0008-9216-7516
http://orcid.org/0000-0001-5982-167X
http://orcid.org/0000-0001-8018-5348
http://orcid.org/0000-0003-1666-0962
http://orcid.org/0000-0002-4122-9384
http://orcid.org/0000-0001-8708-251X
http://orcid.org/0000-0003-1989-4879
http://orcid.org/0000-0003-1898-5760
http://orcid.org/0000-0003-3827-4691
http://orcid.org/0000-0003-3065-9941
http://orcid.org/0000-0001-8783-6529


2 Rubin Observatory Data Management Pipeline Developers

and consists of the 8.4 m Simonyi Survey Telescope with
the 3.4-gigapixel LSSTCam survey camera performing
the main survey and the Rubin Auxiliary Telescope
providing supplementary atmospheric calibration data.
The Data Management System (DMS; O’Mullane et al.
2022) is designed to handle the flow of data from the
telescope, approaching 20 TB per night, in order to is-
sue alerts and to prepare annual data releases. A central
component of the DMS is the LSST Science Pipelines
software that provides the algorithms and frameworks
required to process the data from the LSST and gener-
ate the coadds, difference images, and catalogs to the
user community for scientific analysis.

The LSST Science Pipelines software consists of the
building blocks and pipeline infrastructure required to
construct high performance pipelines to process the data
from LSST. It has been under development since at least
2004 (Axelrod et al. 2004) and has evolved significantly
over the years as the project transitioned from proto-
typing (Axelrod et al. 2010) and entered into formal
construction (Jurić et al. 2017). The software is de-
signed to be usable by other optical telescopes and this
has been demonstrated with Hyper Suprime Cam on
the Subaru Telescope in Hawaii (Bosch et al. 2018) and
also with data from the Dark Energy Camera (DECam),
the VISTA infrared camera (VIRCAM), the Wide Field
Survey Telescope (WFST; Cai et al. 2025), and the
Gravitational-wave Optical Transient Observer (GOTO;
Mullaney et al. 2021).

In this paper we provide an overview of the compo-
nents of the software system. This includes a description
of the support libraries and data access abstraction, the
pipeline task system, and an overview of the algorith-
mic components. We do not include details of the sci-
ence validation of the individual algorithms. The other
components of the LSST DMS, such as the workflow
system (Gower et al. 2022), the Qserv database (Wang
et al. 2011) and the Rubin Science Platform (Jurić et al.
2019), are not covered in this paper.

2. FUNDAMENTALS
The LSST Science Pipelines software is written in

Python with C++ used for high performance algorithms
and for core classes that are usable in both languages.
We use Python 3 (having ported from python 2, Jenness
2020, currently with a minimum version of Python 3.11),
and the C++ layer can use C++17 features with py-
bind11 being used to provide the interface from Python
to C++. Additionally, the C++ layer uses ndarray
to allow seamless passing of C++ arrays to and from
Python numpy arrays. This compatibility with numpy is
important in that it makes LSST data structures avail-

able to standard Python libraries such as Scipy and As-
tropy (Jenness et al. 2016; Astropy Collaboration et al.
2018).

Although all the software uses the lsst namespace,
the code base is split into individual Python products
in the LSST GitHub organization1 that can be installed
independently and which declare their own dependen-
cies. These dependencies are managed using the EUPS
(Padmanabhan et al. 2015; Jenness et al. 2018) where
most of the products are built using the SCons system
(Knight 2005) with LSST-specific extensions provided in
the sconsUtils package enforcing standard build rules.

For logging we always use standard Python logging
with an additional VERBOSE log level between INFO and
DEBUG to provide additional non-debugging detail that
can be enabled during batch processing. This verbose
logging is used for periodic logging where long-lived
analysis tasks are required to issue a log message ev-
ery 10 minutes to indicate to the batch system that
they are still alive and actively performing work. For
logging from C++ we use Log4CXX wrapped in the
lsst.log package to make it look more like standard
Python logging, whilst also supporting deferred string
formatting such that log messages are only formed if
the log message level is sufficient for the message to
be logged. These C++ log messages are forwarded to
Python rather than being issued from an independent
logging stream. Finally, we also provide some LSST-
specific exceptions that can be thrown from C++ code
and caught in Python.

As of April 2024, the Science Pipelines software is ap-
proximately 640,000 lines of Python and 225,000 lines
of C++. The number of lines in the pipelines code as a
function of time is given in Fig. 1.

2.1. Python environment
An important aspect of running a large data process-

ing campaign is to ensure that the software environment
is well defined. We define a base python environment us-
ing conda-forge via a meta package named rubinenv2.
This specifies all the software needed to build and run
the science pipelines software. A Docker container is
built for each software release and the fully-specified ver-
sions of all software are recorded to ensure repeatability.

2.2. Unit Testing and Code Coverage
Unit testing and code coverage are critical compo-

nents of code quality (Jenness et al. 2018). Every

1 https://github.com/lsst
2 https://github.com/conda-forge/rubinenv-feedstock

https://github.com/lsst
https://github.com/conda-forge/rubinenv-feedstock


The LSST Science Pipelines 3

2014 2016 2018 2020 2022 2024
0

100000

200000

300000

400000

500000
py code
py comment
C++ code
C++ comment

Figure 1. The number of lines of code comprising the LSST
Science Pipelines software as a function of time. Line counts
include comments but not blank lines. Python interfaces are
implemented using pybind11 and that is counted as C++
code. For the purposes of this count Science pipelines soft-
ware is defined as the lsst_distrib metapackage and does
not include code from third party packages.

package comes with unit tests written using the stan-
dard unittest module. We run the tests using pytest
(Krekel 2017) and this comes with many advantages in
that all the tests run in the same process and requiring
global parameters to be well understood, test can be run
in parallel in multiple processes, plugins can be enabled
to extend testing and record test coverage, and a test
report can be created giving details of run times and
test failures. Coding standards compliance with PEP 8
(van Rossum 2013) is enforced using GitHub actions and
pre-commit checks. A Jenkins system provides the team
with continuous integration facilities.

3. DATA ACCESS ABSTRACTION
3.1. Butler

Early in the development of the LSST Science
Pipelines software it was decided that the algorithmic
code should be written without knowing where files
came from, what format they were written in, where the
outputs are going to be written or how they are going to
be stored. All that the algorithmic code needs to know
is the relevant data model and the Python type. To
meet these requirements we developed a library called
the Data Butler (see e.g., Jenness et al. 2022; Lust et al.
2023).

The Butler internally is implemented as a registry,
a database keeping track of datasets, and a datas-
tore, a storage system that can map a Butler dataset
to a specific collection of bytes. A datastore is usu-
all a file store (including POSIX file system, S3 ob-
ject stores, or WebDAV) but could also be implemented

Table 1. Common dimensions present in the default
dimension universe.

Name Description

instrument Instrument.
band Waveband of interest.
physical_filter Filter used for the exposure.
day_obs The observing day.
group Group identifier.
exposure Individual exposure.
visit Collection of 1 or 2 exposures.
tract Tesselation of the sky.
patch Patch within a tract.

as a NoSQL database or a metrics database such as
Sasquatch (Fausti 2023).

A core concept of the Butler is that every dataset
must be given what we call a “data coordinate.” The
data coordinate locates the dataset in the dimensional
space where dimensions are defined in terms that sci-
entists understand. Some commonly used dimensions
are listed in Table 1. Each dataset is uniquely located
by specifying its dataset type, its run collection, and
its coordinates, with Butler refusing to accept another
dataset that matches all three of those values. The
dataset type defines the relevant dimensions and the as-
sociated Python storage class. The run collection can be
thought of as a folder but does not have to be a folder
within datastore.

As a concrete example, the file from one detector of
an LSSTCam observation taken sometime in 2025 could
have a data coordinate of instrument="LSSTCam",
detector=42, exposure=2025080300100 and be as-
sociated with a raw dataset type. The exposure
record itself implies other information such as the
physical filter and the time of observation. A
deep coadd on a patch of sky would not have
exposure dimensions at all and would instead be
something like instrument="LSSTCam", tract=105,
patch=2, skymap="something", which would tell you
exactly where it is located in the sky since you can cal-
culate it from the tract and patch and skymap.

3.2. Instrument Abstractions: Obs Packages
The Butler and pipeline construction code know noth-

ing about the specifics of a particular instrument. In the
default dimension universe there is an instrument di-



4 Rubin Observatory Data Management Pipeline Developers

mension that includes a field containing the full name
of a Python Instrument class. This class, which uses a
standard interface, is used by the system to isolate the
instrument-specific from the pipeline-generic. Some of
the responsibilities are:

• Register instrument-specific dimensions such as
detector, physical_filter and the default
visit_system.

• Define the default raw dataset type and the asso-
ciated dimensions.

• Provide configuration defaults for pipeline task
code that is processing data from this instrument.

• Provide a “formatter” class that knows how to
read raw data.

• Define the default curated calibrations known to
this instrument.

By convention we define the instrument class and as-
sociated configuration in obs packages. As an extension
to the base definition of an “instrument“, the LSST Sci-
ence Pipelines define a modified Instrument class that
includes focal plane distortions using the afw package
(see §4.3). There are currently project-supported obs
packages for:

• LSSTCam (Kahn et al. 2010), LATISS (Ingraham
et al. 2020), and associated Rubin Observatory
test stands and simulators.

• Hyper-SuprimeCam (Miyazaki et al. 2018).

• The Dark Energy Camera (DePoy et al. 2008).

• CFHT’s MegaPrime (Boulade et al. 2003).

Additionally, teams outside the project have devel-
oped obs packages to support Subaru’s Prime Focus
Spectrograph (Wang et al. 2020), VISTA’s VIRCAM
(Sutherland et al. 2015), the Wide Field Survey Tele-
scope (WFST; Cai et al. 2025), and the Gravitational-
wave Optical Transient Observer (GOTO; Mullaney
et al. 2021).

3.3. Metadata Translation
Every instrument uses different metadata standards

but the Butler data model and pipelines require some
form of standardization to determine values such as
the coordinates of an observation, the observaton type,
or the time of observation. To perform that stan-
dard extraction of metadata each supported instru-
ment must provide a metadata translator class using

the astro_metadata_translator infrastructure.3 The
translator classes can understand evolving data mod-
els and allow the standardized metadata to be ex-
tracted for the lifetime of an instrument even if headers
changed. Furthermore, in addition to providing stan-
dardized metadata the package can also provide pro-
grammatic or per-exposure corrections to data headers
prior to calculating the translated metadata. This al-
lows files that were written with incorrect headers to be
recovered.

4. CORE INFRASTRUCTURE LIBRARIES
4.1. Region Handling

geom and sphgeom?
Use ICRS coordinates everywhere. All coordinate

transformations are done within Astropy.

4.2. Time and Hierarchical Data Structures
daf_base.
Use Datetime only to store times in C++ objects. Use

astropy.time for all other time handling, following the
recommendations from Jenness et al. (2016).

PropertySet and PropertyList to allow dict-like
data structures to be passed from Python to C++ and
back again.

4.3. Application Framework
afw – this is called the “Application Framework” in

Axelrod et al. (2010)4

• Image/MaskedImage/Exposure

• Table and Catalogs.

• Detection

• Math

• Camera geometry

• FITS I/O

• WCS: AST library (Berry et al. 2016) backs the
world coordinate system handling.

coadd_utils ?

3 https://astro-metadata-translator.lsst.io
4 This document can be downloaded from https://ls.st/

Document-9349

https://astro-metadata-translator.lsst.io
https://ls.st/Document-9349
https://ls.st/Document-9349


The LSST Science Pipelines 5

5. INSTRUMENT SIGNATURE REMOVAL
Raw images from charge-coupled devices (CCDs) con-

tain instrumental effects, such as dark currents, clock-
ing artifacts or crosstalk between neighboring amplifiers,
that can be removed in the data processing. In the Ru-
bin pipeline, this step is called Instrument Signature Re-
moval (ISR) and is the first processing applied to a raw
CCD exposure. The package performing the ISR on
an exposure, called ip_isr, is detailed below in Sec.
5.1: it is a critical package for Data Release Pipeline
(DRP) used to process LSST images and requires cali-
bration products produced and verified by cp_pipe and
cp_verify respectively as described in Sec. 5.3. For
further information about the life cycle of a calibration
product and the procedures it entails, see Waters (2025).
In Sec. 5.2, we specifically describe the correction of am-
plifier offset in more details.

We note that we focus here on our approach to per-
form ISR on data from LSST cameras only (LSSTCam,
ComCam and LATISS), although we also provide cali-
bration pipelines for other cameras such as DECam and
HSC (using a different ISR approach).

5.1. ISR package
Exposures from LSST cameras are affected by instru-

mental effects, ranging from well-known CCD effects like
dark currents or bias levels to effects more recently char-
acterized like tree-rings (see Park et al. (2017, 2020);
Esteves et al. (2023) for more details on tree rings in
LSSTCam) or the Brighter-Fatter effect as discussed in
Broughton et al. (2023). Correcting for these effects re-
quires specific calibrations, which we refer to as calibra-
tion products. In LSST cameras, calibration products
typically are a combined bias, a combined dark, a Pho-
ton Transfer Curve (PTC), a crosstalk matrix, a list of
defects and a look-up table of non-linearity parameters.
The meaning of these calibration products and the de-
tails on the Rubin Observatory’s ISR and calibration
approach can be found in (Fagrelius & Rykoff 2025).

The ip_isr package5 contains the codes needed to
remove instrument signatures in exposures from LSST
cameras and to produce calibration products. To in-
form our ISR approach, we first designed a model of the
instrument, displayed in Fig. 2, based on our knowl-
edge of the hardware and electronics. This model states
the order in which the different known instrumental ef-
fects happen, from a photon hitting the CCD to the out-
put ADC unit (ADU) signal. In turn, isrTaskLSST in
ip_isr sequentially applies corrections of these effects

5 https://github.com/lsst/ip_isr

Figure 2. Schematic of the instrument model for detector
effects in LSST cameras which isrTaskLSST is based on at
the time of publication. Diagram made by Eli Rykoff, more
details about the model can be found in Fagrelius & Rykoff
(2025).

in the opposite order as their effects occur in the model,
as we are attempting to remove the impact of those ef-
fects on the image. Such corrections are typically done
by calling other Tasks (e.g. overscan, crosstalk, etc.)
also implemented in ip_isr.

Overall, isrTaskLSST takes a raw CCD exposure, and
calibration products if available, and outputs a Struct
containing the output exposure, the postISRCCD out-
put exposure as well as its binned version for easier dis-
play, the exposure without interpolation and statistics
on the output exposure. IsrTaskLSSTConfig defines
the configurations used in this Task, they are set by de-
fault to their expected value to perform ISR on a typical
LSSTCam exposure. Configuration parameters starting
with do will typically correspond to an ISR step, they
are turned on or off in the pipelines when producing
the different calibration products. We have also devel-
oped isrMockLSST which simulates a raw exposure and
corresponding calibration products and is used to test
isrTaskLSST.

5.2. Amplifier Offset Correction
The amplifier offset correction (commonly referred

to as amp-offset correction, or pattern continuity cor-
rection) runs as part of the instrument signature re-
moval (ISR) process. This correction is designed to ad-
dress systematic discontinuities in background sky lev-
els across amplifier boundaries. We believe that these
discontinuities arise from electronic biases between adja-
cent amplifiers, persisting even after application of dark
and flat corrections.

https://github.com/lsst/ip_isr


6 Rubin Observatory Data Management Pipeline Developers

Drawing on the PANSTARRS’ Pattern Continuity algo-
rithm (Waters et al. 2020), our method aims to eliminate
these offsets, thereby preventing problems such as back-
ground over-/under-subtraction at amplifier boundaries
caused by discontinuities across the detector.

The amp-offset algorithm initially computes a robust
flux difference measure between two narrow strips on
opposite sides of each amplifier-amplifier interface. Re-
gions containing detected sources, or pixel data which
have been masked for other reasons, are not considered.
These amp-interface differences are stored in an amp-
offset matrix; diagonal entries represent the number of
neighboring amplifiers, and off-diagonal entries encode
information about the associations between amplifiers.
A complementary interface matrix encodes directional
information for these associations. Using this informa-
tion, a least-squares minimization is performed to de-
termine the optimal pedestal value to be added or sub-
tracted to each amp which would reduce the amp-offset
between that amplifier and all of its neighboring am-
plifiers. This method is generalized to support 2D am-
plifier geometries within a detector, as with LSSTCam,
incorporating length-based weighting into the matrices
to account for amplifiers that are not square.

5.3. Calibration pipelines
The pipelines to build calibration products (cp) for

the LSST cameras are defined in cp_pipe6. They set
isrTaskLSST configuration parameters needed for each
calibration product, by enabling all the sequential steps
of the ISR task up to the step before the correction be-
ing generated. In some cases, configurations also spec-
ify whether to combine exposures (for bias or dark ex-
posures for instance) and to bin exposures to support
display.

Once calibration products are produced, they are
“verified” (see Waters (2025) for more details) using
cp_verify7 pipelines by checking they pass metrics de-
fined in (the Good et al. 2025). In this case, verify con-
figuration parameters enable all corrections in the ISR
task up to and including the application of the correc-
tion being verified. As a result, the calibration products
can then be certified to be available in the butler and
used to ISR an exposure.

6. MEASUREMENT SYSTEM
Measurement plugin system.

6 https://github.com/lsst/cp_pipe and see documenta-
tion at https://pipelines.lsst.io/modules/lsst.cp.pipe/
constructing-calibrations.html

7 https://github.com/lsst/cp_verify

meas_base and meas_algorithms

6.1. meas_deblender
6.2. meas_extensions_convolved

6.3. meas_extensions_gaap
6.4. meas_extensions_photometryKron

6.5. meas_extensions_piff
6.6. meas_extensions_psfex

6.7. meas_extensions_scarlet
6.8. meas_extensions_shapeHSM

meas_extensions_shapeHSM package contains the
plugins to measure the shapes of objects. The plu-
gins measure the moments of the sources and PSFs
with adaptive Gaussian weights. The algorithm was
initially described in Hirata & Seljak (2003) and was
modified later in Mandelbaum et al. (2005). The
implementation of these algorithms lives within the
hsm module of the GalSim package (Rowe et al.
2015). meas_extensions_shapeHSM now interacts di-
rectly with the Python layer of GalSim to make the
measurements.

The base plugin for measuring moments
is the HsmMomentsPlugin and is the par-
ent class of the HsmSourceMomentsPlugin and
HsmPsfMomentsPlugin which are specialized to mea-
sure on the sources (and objects) and PSFs respec-
tively. HsmSourceMomentsRoundPlugin is a fur-
ther specialized plugin that measures the moments
with circular Gaussian weights instead of the el-
liptical ones in HsmSourceMomentsPlugin. The
HsmPsfMomentsDebiasedPlugin adds noise to the PSF
image to degrade it to have the same signal-to-noise
ratio (SNR) as the source image. This makes the el-
lipticity calculated from this plugin have the same bias
as the source ellipticity The PSF moments from this
plugin should be used when calculating ellipticity resid-
uals so the bias is largely cancelled. Having the various
specializations as distinct plugins allows an object to be
measured under different configurations simultaneously
and included in the output catalogs.

In addition to the plugins that measure (adap-
tive) weighted moments, there are also a series of
HsmShape plugins to estimate the PSF-corrected ellip-
ticities of objects. In particular, the outputs from
HsmShapeRegaussPlugin have been used to measure
weak gravitation lensing signals in the Hyper Suprime-
Cam SSP data (Mandelbaum et al. 2018; Li et al. 2022).

6.9. meas_extensions_simpleShape
6.10. meas_extensions_trailedSources

https://github.com/lsst/cp_pipe
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-calibrations.html
https://pipelines.lsst.io/modules/lsst.cp.pipe/constructing-calibrations.html
https://github.com/lsst/cp_verify


The LSST Science Pipelines 7

6.11. meas_modelfit
6.12. meas_transiNet

7. DIFFERENCE IMAGING
ip_diffim

8. ASTROMETRIC AND PHOTOMETRIC
CALIBRATION

8.1. Astrometric Calibration
meas_astrom gbdes (Bernstein 2022)
Jointcal no longer discussed.

8.2. Photometric Calibration
8.3. fgcmcal

FGCM (Burke et al. 2018)

9. SOURCE ASSOCIATION
ap_association, for both DiaSource and Solar Sys-

tem processing

10. ALERT GENERATION AND DISTRIBUTION
ap_association, alert_packet

11. PIPELINES
11.1. Pipeline Support

Tasks and PipelineTask overview.
The Task Python class provides a standard interface

for how to execute an algorithm. The PipelineTask
variant provides stronger guarantees on configuration
and provides a means by which the pipeline execution
framework can determine how to link a task into a
pipeline and how to determine what type of data should
be read from a Butler and what should be written out
to a Butler.

Maybe describe pex_config because it’s not described
anywhere.

11.2. Task library
pipe_tasks drp_tasks

11.3. Pipeline Collections
drp_pipe
The ap_pipe package defines the pipeline(s) to be

used for real-time Alert Production processing (??).
These pipelines include instrument signature removal
(§5), calibration (§??), measurement plugins (§6), im-
age differencing (§7), source association (§9), and alert
generation (§10). Some of these tasks are shared with
the pipelines in drp_pipe, but configured to prioritize
speed over strict quality; for example, they use a mini-
mal set of measurement plugins.

ap_pipe currently has pipeline variants for LATISS,
the Rubin Observatory simulators, Hyper-SuprimeCam,
and the Dark Energy Camera. Because these variants
serve as testbeds for AP-specific algorithms and configu-
ration settings, they are, as much as possible, the “same”
pipeline, differing almost entirely in loading instrument
defaults from obs packages (§3.2). The only other cus-
tomization is an extra task for handling DECam’s inter-
chip crosstalk, which does not have an equivalent for
Rubin instruments.

12. CATALOG SCHEMAS
Must transform pipeline products from the internal

data model to the public data model defined in Jurić
et al. (2023).

sdm_schemas felis

13. DISPLAY ABSTRACTIONS
Display plugins for:
matplotlib (Hunter 2007), firefly (Roby et al. 2020),

ds9 (Joye & Mandel 2003)

14. DATA ANALYSIS
analysis_tools verify faro

15. VALIDATING THE SCIENCE PIPELINES
We use small, of order of a few gigabyte, datasets

that can be processed as part of continuous integration.
These take of order an hour to process. There are reg-
ular re-processings of standard datasets that can take a
few days to process. For formal data releases there are
additional metrics calculated and a formal test report is
issued.

16. CONCLUSIONS
The LSST Science Pipelines Software has been de-

veloped over 20 years to support the processing of the
Legacy Survey of Space and Time.

This material is based upon work supported in part
by the National Science Foundation through Coopera-
tive Agreement AST-1258333 and Cooperative Support
Agreement AST-1202910 managed by the Association
of Universities for Research in Astronomy (AURA), and
the Department of Energy under Contract No. DE-
AC02-76SF00515 with the SLAC National Accelerator
Laboratory managed by Stanford University. Addi-
tional Rubin Observatory funding comes from private
donations, grants to universities, and in-kind support
from LSSTC Institutional Members.

Facilities: Rubin:Simonyi (LSSTCam), Rubin:1.2m
(LATISS)



8 Rubin Observatory Data Management Pipeline Developers

Software: ndarray (https://github.com/ndarray/
ndarray), astropy (Astropy Collaboration et al. 2022),
pytest (Krekel 2017), matplotlib (Hunter 2007), galsim

(Rowe et al. 2015), numpy (Harris et al. 2020), gbdes
(Bernstein 2022), Starlink’s (Berry et al. 2022) AST
(Berry et al. 2016), fgcm (https://github.com/erykoff/
fgcm),

REFERENCES

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,
et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L.,
et al. 2022, ApJ, 935, 167, doi: 10.3847/1538-4357/ac7c74

Axelrod, T., Connolly, A., Ivezic, Z., et al. 2004, in
American Astronomical Society Meeting Abstracts, Vol.
205, American Astronomical Society Meeting Abstracts,
108.11

Axelrod, T., Kantor, J., Lupton, R. H., & Pierfederici, F.
2010, in Proc. SPIE, Vol. 7740, Software and
Cyberinfrastructure for Astronomy, ed. N. M. Radziwill
& A. Bridger, 15

Bernstein, G. M. 2022, gbdes: DECam instrumental
signature fitting and processing programs, Astrophysics
Source Code Library, record ascl:2210.011

Berry, D., Graves, S., Bell, G. S., et al. 2022, in
Astronomical Society of the Pacific Conference Series,
Vol. 532, Astronomical Data Analysis Software and
Systems XXX, ed. J. E. Ruiz, F. Pierfedereci, &
P. Teuben, 559

Berry, D. S., Warren-Smith, R. F., & Jenness, T. 2016,
Astronomy and Computing, 15, 33,
doi: 10.1016/j.ascom.2016.02.003

Bosch, J., Armstrong, R., Bickerton, S., et al. 2018, PASJ,
70, S5, doi: 10.1093/pasj/psx080

Boulade, O., Charlot, X., Abbon, P., et al. 2003, in Society
of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 4841, Instrument Design and
Performance for Optical/Infrared Ground-based
Telescopes, ed. M. Iye & A. F. M. Moorwood, 72–81

Broughton, A., Utsumi, Y., Malagón, A. P., et al. 2023,
Mitigation of the Brighter-Fatter Effect in the LSST
Camera. https://arxiv.org/abs/2312.03115.
https://arxiv.org/abs/2312.03115

Burke, D. L., Rykoff, E. S., Allam, S., et al. 2018, AJ, 155,
41, doi: 10.3847/1538-3881/aa9f22

Cai, M., Xu, Z., Fan, L., et al. 2025, arXiv e-prints,
arXiv:2501.15018, doi: 10.48550/arXiv.2501.15018

DePoy, D. L., Abbott, T., Annis, J., et al. 2008, in Society
of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 7014, Ground-based and Airborne
Instrumentation for Astronomy II, ed. I. S. McLean &
M. M. Casali, 70140E

Esteves, J. H., Utsumi, Y., Snyder, A., et al. 2023,
Photometry, Centroid and Point-Spread Function
Measurements in the LSST Camera Focal Plane Using
Artificial Stars, arXiv, doi: 10.48550/arXiv.2308.00919.
http://arxiv.org/abs/2308.00919

Fagrelius, P., & Rykoff, E. 2025, Rubin Baseline Calibration
Plan, Vera C. Rubin Observatory.
https://sitcomtn-086.lsst.io/

Fausti, A. 2023, Sasquatch: beyond the EFD, Vera C.
Rubin Observatory. https://sqr-068.lsst.io/

Gower, M., Kowalik, M., Lust, N. B., Bosch, J. F., &
Jenness, T. 2022, arXiv e-prints, arXiv:2211.15795,
doi: 10.48550/arXiv.2211.15795

Harris, C. R., Millman, K. J., van der Walt, S. J., et al.
2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2

Hirata, C., & Seljak, U. 2003, MNRAS, 343, 459,
doi: 10.1046/j.1365-8711.2003.06683.x

Hunter, J. D. 2007, Computing in Science and Engineering,
9, 90, doi: 10.1109/MCSE.2007.55

Ingraham, P., Clements, A. W., Ribeiro, T., et al. 2020, in
Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 11452, Software and
Cyberinfrastructure for Astronomy VI, ed. J. C. Guzman
& J. Ibsen, 114520U

Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873,
111, doi: 10.3847/1538-4357/ab042c

Jenness, T. 2020, in Astronomical Society of the Pacific
Conference Series, Vol. 522, Astronomical Data Analysis
Software and Systems XXVII, ed. P. Ballester, J. Ibsen,
M. Solar, & K. Shortridge, 541

Jenness, T., Economou, F., Findeisen, K., et al. 2018, in
Proc. SPIE, Vol. 10707, Software and
Cyberinfrastructure for Astronomy V, 1070709

Jenness, T., Bosch, J., Owen, R., et al. 2016, in Proc. SPIE,
Vol. 9913, Software and Cyberinfrastructure for
Astronomy IV, 99130G

Jenness, T., Bosch, J. F., Salnikov, A., et al. 2022, in
Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 12189, Software and
Cyberinfrastructure for Astronomy VII, 1218911

https://github.com/ndarray/ndarray
https://github.com/ndarray/ndarray
https://github.com/erykoff/fgcm
https://github.com/erykoff/fgcm
http://doi.org/10.3847/1538-3881/aabc4f
http://doi.org/10.3847/1538-4357/ac7c74
http://doi.org/10.1016/j.ascom.2016.02.003
http://doi.org/10.1093/pasj/psx080
https://arxiv.org/abs/2312.03115
https://arxiv.org/abs/2312.03115
http://doi.org/10.3847/1538-3881/aa9f22
http://doi.org/10.48550/arXiv.2501.15018
http://doi.org/10.48550/arXiv.2308.00919
http://arxiv.org/abs/2308.00919
https://sitcomtn-086.lsst.io/
https://sqr-068.lsst.io/
http://doi.org/10.48550/arXiv.2211.15795
http://doi.org/10.1038/s41586-020-2649-2
http://doi.org/10.1046/j.1365-8711.2003.06683.x
http://doi.org/10.1109/MCSE.2007.55
http://doi.org/10.3847/1538-4357/ab042c


The LSST Science Pipelines 9

Joye, W. A., & Mandel, E. 2003, in Astronomical Society of
the Pacific Conference Series, Vol. 295, Astronomical
Data Analysis Software and Systems XII, ed. H. E.
Payne, R. I. Jedrzejewski, & R. N. Hook, 489

Jurić, M., Ciardi, D., Dubois-Felsmann, G., & Guy, L.
2019, LSST Science Platform Vision Document, Vera C.
Rubin Observatory. https://lse-319.lsst.io/

Jurić, M., Kantor, J., Lim, K. T., et al. 2017, in
Astronomical Society of the Pacific Conference Series,
Vol. 512, Astronomical Data Analysis Software and
Systems XXV, ed. N. P. F. Lorente, K. Shortridge, &
R. Wayth, 279

Jurić, M., Axelrod, T., Becker, A., et al. 2023, Data
Products Definition Document, Vera C. Rubin
Observatory. https://lse-163.lsst.io/

Kahn, S. M., Kurita, N., Gilmore, K., et al. 2010, in Society
of Photo-Optical Instrumentation Engineers (SPIE)
Conference Series, Vol. 7735, Ground-based and Airborne
Instrumentation for Astronomy III, ed. I. S. McLean,
S. K. Ramsay, & H. Takami, 0

Knight, S. 2005, Computing in Science Engineering, 7, 79,
doi: 10.1109/MCSE.2005.11

Krekel, H. 2017, pytest: helps you write better programs.
https://docs.pytest.org

Li, X., Miyatake, H., Luo, W., et al. 2022, PASJ, 74, 421,
doi: 10.1093/pasj/psac006

Lust, N. B., Jenness, T., Bosch, J. F., et al. 2023, arXiv
e-prints, arXiv:2303.03313,
doi: 10.48550/arXiv.2303.03313

Mandelbaum, R., Hirata, C. M., Seljak, U., et al. 2005,
MNRAS, 361, 1287,
doi: 10.1111/j.1365-2966.2005.09282.x

Mandelbaum, R., Miyatake, H., Hamana, T., et al. 2018,
PASJ, 70, S25, doi: 10.1093/pasj/psx130

Miyazaki, S., Komiyama, Y., Kawanomoto, S., et al. 2018,
PASJ, 70, S1, doi: 10.1093/pasj/psx063

Mullaney, J. R., Makrygianni, L., Dhillon, V., et al. 2021,
PASA, 38, e004, doi: 10.1017/pasa.2020.45

O’Mullane, W., Economou, F., Lim, K.-T., et al. 2022,
arXiv e-prints, arXiv:2211.13611,
doi: 10.48550/arXiv.2211.13611

Padmanabhan, N., Lupton, R., & Loomis, C. 2015, EUPS
— a Tool to Manage Software Dependencies,
https://github.com/RobertLuptonTheGood/eups

Park, H. Y., Karpov, S., Nomerotski, A., & Tsybychev, D.
2020, Journal of Astronomical Telescopes, Instruments,
and Systems, 6, 011005, doi: 10.1117/1.JATIS.6.1.011005

Park, H. Y., Nomerotski, A., & Tsybychev, D. 2017,
Journal of Instrumentation, 12, C05015,
doi: 10.1088/1748-0221/12/05/C05015

Roby, W., Wu, X., Dubois–Felmann, G., et al. 2020, in
Astronomical Society of the Pacific Conference Series,
Vol. 527, Astronomical Data Analysis Software and
Systems XXIX, ed. R. Pizzo, E. R. Deul, J. D. Mol, J. de
Plaa, & H. Verkouter, 243

Rowe, B. T. P., Jarvis, M., Mandelbaum, R., et al. 2015,
Astronomy and Computing, 10, 121,
doi: 10.1016/j.ascom.2015.02.002

Sutherland, W., Emerson, J., Dalton, G., et al. 2015, A&A,
575, A25, doi: 10.1051/0004-6361/201424973

the Good, R. L., Malagón, A. A. P., & Waters, C. 2025,
Verifying LSST Calibration Data Products, Vera C.
Rubin Observatory. https://dmtn-101.lsst.io/

van Rossum, G. 2013, PEP 8 – Style Guide for Python
Code, Python Software Foundation.
https://www.python.org/dev/peps/pep-0008/

Wang, D. L., Monkewitz, S. M., Lim, K.-T., & Becla, J.
2011, in State of the Practice Reports, SC ’11 (New
York, NY, USA: ACM), 12:1–12:11

Wang, S.-Y., Huang, P.-J., Chen, H.-Y., et al. 2020, in
Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, Vol. 11447, Ground-based and
Airborne Instrumentation for Astronomy VIII, ed. C. J.
Evans, J. J. Bryant, & K. Motohara, 114477V

Waters, C. 2025, Calibration Generation, Verification,
Acceptance, and Certification., Vera C. Rubin
Observatory. https://dmtn-222.lsst.io/

Waters, C. Z., Magnier, E. A., Price, P. A., et al. 2020,
ApJS, 251, 4, doi: 10.3847/1538-4365/abb82b

https://lse-319.lsst.io/
https://lse-163.lsst.io/
http://doi.org/10.1109/MCSE.2005.11
https://docs.pytest.org
http://doi.org/10.1093/pasj/psac006
http://doi.org/10.48550/arXiv.2303.03313
http://doi.org/10.1111/j.1365-2966.2005.09282.x
http://doi.org/10.1093/pasj/psx130
http://doi.org/10.1093/pasj/psx063
http://doi.org/10.1017/pasa.2020.45
http://doi.org/10.48550/arXiv.2211.13611
https://github.com/RobertLuptonTheGood/eups
http://doi.org/10.1117/1.JATIS.6.1.011005
http://doi.org/10.1088/1748-0221/12/05/C05015
http://doi.org/10.1016/j.ascom.2015.02.002
http://doi.org/10.1051/0004-6361/201424973
https://dmtn-101.lsst.io/
https://www.python.org/dev/peps/pep-0008/
https://dmtn-222.lsst.io/
http://doi.org/10.3847/1538-4365/abb82b

	Introduction
	Fundamentals
	Python environment
	Unit Testing and Code Coverage

	Data Access Abstraction
	Butler
	Instrument Abstractions: Obs Packages
	Metadata Translation

	Core Infrastructure Libraries
	Region Handling
	Time and Hierarchical Data Structures
	Application Framework

	Instrument Signature Removal
	ISR package
	Amplifier Offset Correction
	Calibration pipelines

	Measurement System
	meas_deblender
	meas_extensions_convolved
	meas_extensions_gaap
	meas_extensions_photometryKron
	meas_extensions_piff
	meas_extensions_psfex
	meas_extensions_scarlet
	meas_extensions_shapeHSM
	meas_extensions_simpleShape
	meas_extensions_trailedSources
	meas_modelfit
	meas_transiNet

	Difference Imaging
	Astrometric and Photometric Calibration
	Astrometric Calibration
	Photometric Calibration
	fgcmcal

	Source Association
	Alert Generation and Distribution
	Pipelines
	Pipeline Support
	Task library
	Pipeline Collections

	Catalog Schemas
	Display Abstractions
	Data Analysis
	Validating the Science Pipelines
	Conclusions

